login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100125
Decimal expansion of Sum_{n>0} n/(2^(n^2)).
1
6, 3, 0, 9, 2, 0, 5, 5, 9, 2, 5, 5, 1, 8, 5, 8, 6, 4, 7, 7, 8, 3, 2, 4, 0, 0, 3, 9, 0, 7, 9, 4, 3, 3, 7, 0, 0, 9, 2, 1, 5, 1, 4, 2, 9, 9, 2, 1, 7, 8, 7, 9, 8, 6, 8, 0, 6, 4, 4, 4, 2, 4, 8, 9, 9, 9, 8, 9, 8, 0, 8, 1, 0, 7, 8, 3, 8, 1, 7, 7, 3, 4, 7, 3, 8, 8, 2, 0, 0, 1, 9, 2, 0, 6, 4, 4, 4, 5, 2, 1
OFFSET
0,1
COMMENTS
This number is obviously 2-dense, but not 2-normal: any finite binary string s representing the value N will appear in its digits, not later than those added by the term N/2^(N^2), but nonzero digits have density zero since the gap between those added by subsequent terms is increasing much faster (~ n) than the maximal possible number of new nonzero digits (~ log_2(n)). - M. F. Hasler, Mar 22 2017
LINKS
David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, page 27.
EXAMPLE
0.6309205592551858647783240039079433700921514299217879868...
MATHEMATICA
RealDigits[N[Sum[n/(2^(n^2)), {n, 4!}], 100]][[1]] (* Arkadiusz Wesolowski, Sep 29 2011 *)
PROG
(PARI) default(realprecision, 100); sum(n=1, 100, n/(2^(n^2)), 0.) \\ Typo corrected. sum(n=1, 100, n*1.>>(n^2)) is 25 x faster for 1000 digits. - M. F. Hasler, Mar 22 2017
CROSSREFS
Cf. A066716: binary Champernowne constant.
Sequence in context: A206530 A333549 A191896 * A153459 A102525 A119923
KEYWORD
cons,nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Sep 29 2011
STATUS
approved