login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206530
Decimal expansion of 1/(1-sin(1)).
4
6, 3, 0, 7, 9, 9, 3, 5, 1, 6, 4, 4, 3, 7, 4, 0, 0, 2, 7, 5, 1, 3, 5, 2, 1, 7, 3, 9, 8, 2, 4, 1, 6, 0, 1, 2, 8, 9, 7, 1, 3, 4, 2, 0, 4, 7, 2, 5, 7, 6, 3, 9, 3, 0, 2, 2, 5, 2, 4, 0, 1, 0, 1, 5, 3, 4, 9, 7, 9, 9, 3, 2, 6, 2, 4, 1, 2, 3, 5, 5, 6, 9, 1, 9, 2, 8, 6, 2, 1, 4, 8, 3, 8, 3, 9, 0, 7, 0, 0, 9, 1, 3, 9
OFFSET
1,1
COMMENTS
The value of the limit of (A206307+6*A206308) / (A206308).
REFERENCES
E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.
LINKS
FORMULA
Equals 1/(1-A049469).
A206307/A206308 + 6 -> 1/(1-A049469).
Abs(A206308/(1-sin(1)) - (A206307 + 6*A206308)) -> 0.
EXAMPLE
6.3079935164437400275135217398...
MATHEMATICA
RealDigits[N[1/(1-Sin[1]), 150]][[1]]
PROG
(Magma) SetDefaultRealField(RealField(150)); 1/(1-Sin(1)); // G. C. Greubel, Dec 20 2022
(SageMath) numerical_approx(1/(1-sin(1)), digits=150) # G. C. Greubel, Dec 20 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Seiichi Kirikami, Feb 11 2012
STATUS
approved