login
A206530
Decimal expansion of 1/(1-sin(1)).
4
6, 3, 0, 7, 9, 9, 3, 5, 1, 6, 4, 4, 3, 7, 4, 0, 0, 2, 7, 5, 1, 3, 5, 2, 1, 7, 3, 9, 8, 2, 4, 1, 6, 0, 1, 2, 8, 9, 7, 1, 3, 4, 2, 0, 4, 7, 2, 5, 7, 6, 3, 9, 3, 0, 2, 2, 5, 2, 4, 0, 1, 0, 1, 5, 3, 4, 9, 7, 9, 9, 3, 2, 6, 2, 4, 1, 2, 3, 5, 5, 6, 9, 1, 9, 2, 8, 6, 2, 1, 4, 8, 3, 8, 3, 9, 0, 7, 0, 0, 9, 1, 3, 9
OFFSET
1,1
COMMENTS
The value of the limit of (A206307+6*A206308) / (A206308).
REFERENCES
E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.
LINKS
FORMULA
Equals 1/(1-A049469).
A206307/A206308 + 6 -> 1/(1-A049469).
Abs(A206308/(1-sin(1)) - (A206307 + 6*A206308)) -> 0.
EXAMPLE
6.3079935164437400275135217398...
MATHEMATICA
RealDigits[N[1/(1-Sin[1]), 150]][[1]]
PROG
(Magma) SetDefaultRealField(RealField(150)); 1/(1-Sin(1)); // G. C. Greubel, Dec 20 2022
(SageMath) numerical_approx(1/(1-sin(1)), digits=150) # G. C. Greubel, Dec 20 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Seiichi Kirikami, Feb 11 2012
STATUS
approved