login
A196830
Decimal expansion of the least x>0 satisfying 1/(1+x^2)=6*sin(x).
6
1, 6, 3, 0, 7, 1, 2, 1, 1, 9, 9, 5, 5, 0, 6, 9, 1, 8, 9, 1, 1, 7, 2, 0, 2, 5, 2, 1, 4, 9, 6, 2, 3, 5, 8, 2, 3, 1, 3, 3, 1, 8, 8, 7, 4, 6, 4, 0, 3, 0, 3, 5, 5, 0, 2, 4, 6, 3, 2, 9, 1, 5, 0, 0, 1, 9, 1, 5, 2, 4, 4, 8, 6, 3, 8, 6, 8, 0, 0, 7, 4, 4, 7, 8, 8, 4, 0, 7, 7, 1, 3, 9, 0, 5, 9, 1, 0, 9, 8, 4
OFFSET
0,2
EXAMPLE
x=0.16307121199550691891172025214962358231331887464030355...
MATHEMATICA
Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196825 *)
t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196826 *)
t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196827 *)
t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196828 *)
t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196829 *)
t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196830 *)
CROSSREFS
Cf. A196832.
Sequence in context: A198868 A249733 A241532 * A206530 A333549 A191896
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 07 2011
STATUS
approved