login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196826
Decimal expansion of the least x>0 satisfying 1/(1+x^2)=2*sin(x).
6
4, 3, 4, 2, 0, 2, 5, 4, 9, 9, 9, 8, 1, 9, 6, 3, 8, 6, 8, 1, 3, 5, 2, 4, 4, 2, 1, 9, 6, 6, 6, 8, 4, 0, 1, 9, 8, 3, 9, 6, 2, 3, 8, 0, 7, 6, 4, 7, 6, 7, 2, 5, 5, 4, 6, 4, 7, 2, 0, 6, 3, 4, 8, 5, 3, 3, 2, 3, 7, 1, 0, 7, 3, 3, 7, 0, 0, 8, 1, 7, 2, 0, 8, 8, 0, 7, 6, 7, 5, 2, 2, 1, 5, 6, 0, 7, 5, 5, 5, 4
OFFSET
0,1
EXAMPLE
x=0.43420254999819638681352442196668401983962380...
MATHEMATICA
Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196825 *)
t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196826 *)
t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196827 *)
t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196828 *)
t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196829 *)
t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196830 *)
CROSSREFS
Cf. A196832.
Sequence in context: A286953 A170987 A239735 * A215597 A266110 A204819
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 07 2011
STATUS
approved