The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196824 Decimal expansion of the slope (negative) at the point of tangency of the curves y=1/(1+x^2) and y=-c+cos(x), where c is given by A196774. 3
 6, 3, 4, 1, 6, 4, 9, 7, 0, 6, 9, 5, 8, 7, 7, 9, 5, 6, 1, 0, 2, 7, 4, 9, 8, 1, 1, 8, 6, 4, 0, 2, 3, 8, 0, 5, 5, 8, 2, 2, 4, 8, 4, 2, 8, 3, 9, 3, 2, 7, 5, 4, 5, 8, 4, 2, 1, 3, 3, 1, 7, 4, 7, 4, 1, 0, 3, 6, 3, 6, 2, 9, 9, 4, 1, 7, 8, 8, 6, 3, 1, 0, 0, 1, 8, 2, 8, 0, 4, 2, 7, 5, 6, 0, 4, 4, 1, 4, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE slope=-0.6341649706958779561027498118640238055822484... MATHEMATICA Plot[{1/(1 + x^2), -.094 + Cos[x]}, {x, 0, 1}] t = x /. FindRoot[2 x == ((1 + x^2)^2) Sin[x], {x, .5, 1}, WorkingPrecision -> 100] RealDigits[t]     (* A196822 *) c = N[-Cos[t] + 1/(1 + t^2), 100] RealDigits[c]     (* A196823 *) slope = N[-Sin[t], 100] RealDigits[slope] (* A196824 *) CROSSREFS Cf. A196823. Sequence in context: A227989 A189088 A195301 * A309988 A275835 A257235 Adjacent sequences:  A196821 A196822 A196823 * A196825 A196826 A196827 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 04:03 EDT 2021. Contains 343909 sequences. (Running on oeis4.)