login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A196829
Decimal expansion of the least x>0 satisfying 1/(1+x^2)=5*sin(x).
6
1, 9, 3, 9, 6, 2, 4, 3, 0, 6, 8, 1, 0, 0, 6, 7, 1, 6, 6, 3, 0, 0, 8, 0, 4, 7, 1, 7, 7, 3, 9, 5, 7, 4, 8, 6, 5, 5, 4, 8, 8, 5, 3, 9, 8, 6, 3, 7, 7, 5, 3, 2, 1, 2, 5, 8, 2, 5, 8, 6, 8, 2, 2, 0, 1, 7, 3, 6, 1, 1, 6, 2, 9, 7, 4, 5, 9, 2, 2, 6, 2, 3, 1, 8, 8, 6, 5, 2, 8, 0, 9, 3, 1, 6, 2, 0, 6, 3, 2, 5
OFFSET
0,2
EXAMPLE
x=0.1939624306810067166300804717739574865548853986...
MATHEMATICA
Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196825 *)
t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196826 *)
t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196827 *)
t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196828 *)
t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196829 *)
t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196830 *)
CROSSREFS
Cf. A196832.
Sequence in context: A086705 A199866 A276558 * A019879 A334376 A361062
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 07 2011
EXTENSIONS
Offset corrected by Georg Fischer, Aug 10 2021
STATUS
approved