Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 20 2022 11:23:28
%S 6,3,0,7,9,9,3,5,1,6,4,4,3,7,4,0,0,2,7,5,1,3,5,2,1,7,3,9,8,2,4,1,6,0,
%T 1,2,8,9,7,1,3,4,2,0,4,7,2,5,7,6,3,9,3,0,2,2,5,2,4,0,1,0,1,5,3,4,9,7,
%U 9,9,3,2,6,2,4,1,2,3,5,5,6,9,1,9,2,8,6,2,1,4,8,3,8,3,9,0,7,0,0,9,1,3,9
%N Decimal expansion of 1/(1-sin(1)).
%C The value of the limit of (A206307+6*A206308) / (A206308).
%D E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.
%H G. C. Greubel, <a href="/A206530/b206530.txt">Table of n, a(n) for n = 1..5000</a>
%F Equals 1/(1-A049469).
%F A206307/A206308 + 6 -> 1/(1-A049469).
%F Abs(A206308/(1-sin(1)) - (A206307 + 6*A206308)) -> 0.
%e 6.3079935164437400275135217398...
%t RealDigits[N[1/(1-Sin[1]), 150]][[1]]
%o (Magma) SetDefaultRealField(RealField(150)); 1/(1-Sin(1)); // _G. C. Greubel_, Dec 20 2022
%o (SageMath) numerical_approx(1/(1-sin(1)), digits=150) # _G. C. Greubel_, Dec 20 2022
%Y Cf. A002943, A049469, A125202, A206307, A206308.
%K nonn,cons
%O 1,1
%A _Seiichi Kirikami_, Feb 11 2012