OFFSET
1,2
COMMENTS
Equals the Hausdorff dimension of Pascal's triangle modulo 3 (A083093). In general, the dimension of Pascal's triangle modulo a prime p is log(p*(p+1)/2) / log(p) (see Reiter link, theorem 2 page 117). - Bernard Schott, Dec 01 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000.
A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
Wikipedia, List of fractals by Hausdorff dimension (see Pascal triangle modulo 3).
FORMULA
EXAMPLE
1.6309297535714574370995271143427608542995856401318804278706...
MAPLE
evalf(log(6)/log(3), 80); # Bernard Schott, Dec 01 2022
MATHEMATICA
RealDigits[Log[3, 6], 10, 120][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Oct 30 2009
STATUS
approved