login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153459
Decimal expansion of log_3 (6).
2
1, 6, 3, 0, 9, 2, 9, 7, 5, 3, 5, 7, 1, 4, 5, 7, 4, 3, 7, 0, 9, 9, 5, 2, 7, 1, 1, 4, 3, 4, 2, 7, 6, 0, 8, 5, 4, 2, 9, 9, 5, 8, 5, 6, 4, 0, 1, 3, 1, 8, 8, 0, 4, 2, 7, 8, 7, 0, 6, 5, 4, 9, 4, 3, 8, 3, 8, 6, 8, 5, 2, 0, 1, 3, 8, 0, 9, 1, 4, 8, 0, 5, 0, 6, 1, 1, 7, 2, 6, 8, 8, 5, 4, 9, 4, 5, 1, 7, 4
OFFSET
1,2
COMMENTS
Equals the Hausdorff dimension of Pascal's triangle modulo 3 (A083093). In general, the dimension of Pascal's triangle modulo a prime p is log(p*(p+1)/2) / log(p) (see Reiter link, theorem 2 page 117). - Bernard Schott, Dec 01 2022
LINKS
A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
Wikipedia, List of fractals by Hausdorff dimension (see Pascal triangle modulo 3).
FORMULA
Equals A016629 / A002391 = 1 + A102525. - Bernard Schott, Dec 01 2022
EXAMPLE
1.6309297535714574370995271143427608542995856401318804278706...
MAPLE
evalf(log(6)/log(3), 80); # Bernard Schott, Dec 01 2022
MATHEMATICA
RealDigits[Log[3, 6], 10, 120][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Oct 30 2009
STATUS
approved