login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339801
Decimal expansion of the real part of harmonic number H(1/2 + i*sqrt(3)/2), where i=sqrt(-1).
1
8, 6, 2, 2, 8, 9, 1, 0, 6, 1, 7, 1, 8, 3, 6, 3, 8, 6, 5, 3, 5, 0, 8, 5, 4, 5, 0, 0, 5, 4, 4, 2, 9, 8, 5, 7, 1, 6, 6, 2, 1, 1, 1, 4, 6, 1, 0, 1, 1, 4, 9, 8, 5, 0, 2, 9, 5, 6, 4, 4, 0, 3, 5, 2, 7, 9, 5, 6, 5, 7, 6, 2, 3, 3, 2, 8, 8, 5, 1, 0, 1, 4, 2, 9, 3, 6, 7, 0, 0, 9, 1, 8, 7, 7, 9, 0, 1, 2, 7, 7, 4, 5, 3, 2, 8
OFFSET
0,1
COMMENTS
For imaginary part see A339802.
For real b, Im(Psi(1/2 + b*i)) = Pi*tanh(Pi*b)/2, but no such closed formula is known for the real part (see Wikipedia link). - Vaclav Kotesovec, Dec 19 2020
FORMULA
Equals 1/2 + gamma + Re(Psi(1/2 + i*sqrt(3)/2)), where gamma is the Euler-Mascheroni constant (see A001620) and Psi is the digamma function.
Equals -1/2 + 3*A339604 + 3*A339606.
Equals Re((1 + i*sqrt(3))*Sum_{k>=0} 1/((1 + k)*(3 + i*sqrt(3) + 2*k))).
EXAMPLE
0.862289106171836386535085450...
MATHEMATICA
RealDigits[N[Re[HarmonicNumber[1/2 + I Sqrt[3]/2]], 105]][[1]]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Dec 17 2020
STATUS
approved