login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339530 Decimal expansion of Sum_{k>=1} (zeta(8*k)-1). 11
0, 0, 4, 0, 9, 2, 6, 9, 8, 2, 9, 9, 2, 8, 6, 2, 8, 7, 3, 0, 7, 4, 7, 6, 2, 0, 4, 6, 8, 9, 6, 4, 0, 2, 5, 9, 8, 6, 5, 2, 4, 9, 8, 2, 4, 7, 3, 5, 4, 0, 0, 1, 6, 9, 8, 1, 2, 4, 9, 1, 0, 5, 6, 0, 0, 5, 5, 5, 7, 2, 1, 3, 9, 8, 9, 5, 8, 1, 9, 3, 5, 8, 3, 5, 4, 4, 8, 8, 9, 4, 3, 5, 1, 8, 1, 9, 6, 9, 5, 1, 1, 5, 0, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..104.

FORMULA

Equals Sum_{k>=2} 1/(k^8 - 1).

Equals 15/16 - Pi*coth(Pi)/8 + Pi * (sin(sqrt(2)*Pi) + sinh(sqrt(2)*Pi)) / (4*sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))).

Equals (1/2)*Sum_{k>=2} 1/(k^4-1) - (1/2)*Sum_{k>=2} 1/(k^4+1) = (A256919-A256920)/2. - R. J. Mathar, Jan 22 2021

EXAMPLE

0.00409269829928628730747620468964025986524982473540016981249105600555721...

MATHEMATICA

Join[{0, 0}, RealDigits[15/16 - Pi*Coth[Pi]/8 + Pi*(Sin[Sqrt[2]*Pi] + Sinh[Sqrt[2]*Pi]) / (4*Sqrt[2]*(Cos[Sqrt[2]*Pi] - Cosh[Sqrt[2]*Pi])), 10, 100][[1]]]

CROSSREFS

Cf. A024006, A256919, A339529.

Sequence in context: A213472 A305742 A199000 * A200591 A133844 A198238

Adjacent sequences:  A339527 A339528 A339529 * A339531 A339532 A339533

KEYWORD

nonn,cons

AUTHOR

Vaclav Kotesovec, Dec 08 2020, following a suggestion of Artur Jasinski

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 06:07 EST 2021. Contains 349627 sequences. (Running on oeis4.)