login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256919 Decimal expansion of Sum_{k>=1} (zeta(4*k) - 1). 13
0, 8, 6, 6, 6, 2, 9, 7, 6, 2, 6, 5, 7, 0, 9, 4, 1, 2, 9, 3, 2, 9, 7, 4, 6, 0, 2, 6, 2, 4, 9, 9, 9, 7, 5, 4, 7, 7, 7, 1, 7, 1, 8, 6, 6, 7, 9, 8, 0, 9, 1, 6, 6, 7, 2, 1, 2, 4, 6, 8, 7, 5, 7, 8, 0, 4, 9, 2, 2, 8, 7, 6, 0, 4, 0, 8, 4, 4, 9, 8, 9, 1, 2, 8, 2, 1, 7, 2, 2, 4, 1, 2, 0, 3, 0, 2, 2, 5, 4, 0, 6, 1, 7, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.

LINKS

Table of n, a(n) for n=0..104.

V. S. Adamchik, H. M. Srivastava, Some series of Zeta and related functions, Analysis (Munich) 18 (2) (1998) 131-144, eq. (2.25).

Eric Weisstein's MathWorld, Riemann Zeta Function

Wikipedia, Riemann Zeta Function

FORMULA

Equals 7/8 - (Pi/4)*coth(Pi).

Equals Sum_{n>=2} 1/(n^4 - 1). - Vaclav Kotesovec, Dec 08 2020

Equals (1/2)* Sum_{n>=2} 1/(n^2-1) - (1/2)* Sum_{n>=2} 1/(n^2+1) = (3/4 - A100554)/2. - R. J. Mathar, Jan 22 2021

EXAMPLE

0.0866629762657094129329746026249997547771718667980916672...

= -3 + Pi^4/90 + Pi^8/9450 + 691*Pi^12/638512875 + ...

MATHEMATICA

Join[{0}, RealDigits[7/8 - (Pi/4)*Coth[Pi], 10, 104] // First]

CROSSREFS

Cf. A013662, A013666, A013670, A175316, A256920, A339529, A339530, A339604 (3k-1).

Sequence in context: A003675 A254290 A121948 * A114141 A089139 A093209

Adjacent sequences:  A256916 A256917 A256918 * A256920 A256921 A256922

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Apr 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 20:52 EST 2021. Contains 341953 sequences. (Running on oeis4.)