login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024006
a(n) = 1 - n^8.
11
1, 0, -255, -6560, -65535, -390624, -1679615, -5764800, -16777215, -43046720, -99999999, -214358880, -429981695, -815730720, -1475789055, -2562890624, -4294967295, -6975757440, -11019960575, -16983563040, -25599999999, -37822859360, -54875873535
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
Sum_{n>=2} -1/a(n) = 15/16 - Pi*(coth(Pi)/8) + Pi * (sin(sqrt(2)*Pi) + sinh(sqrt(2)*Pi)) / (4*sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = A339530 = 0.0040926982992862873... . - Vaclav Kotesovec, Feb 14 2015
MATHEMATICA
Table[1-n^8, {n, 0, 40}] (* and *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 0, -255, -6560, -65535, -390624, -1679615, -5764800, -16777215}, 40] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
PROG
(Magma) [1-n^8: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(PARI) a(n)=1-n^8 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A024004.
Sequence in context: A022524 A261032 A069093 * A258809 A321553 A321547
KEYWORD
sign,easy
AUTHOR
STATUS
approved