login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024006 a(n) = 1 - n^8. 5
1, 0, -255, -6560, -65535, -390624, -1679615, -5764800, -16777215, -43046720, -99999999, -214358880, -429981695, -815730720, -1475789055, -2562890624, -4294967295, -6975757440, -11019960575, -16983563040, -25599999999, -37822859360, -54875873535 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..420

Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).

FORMULA

Sum_{n>=2} -1/a(n) = 15/16 - Pi*(coth(Pi)/8) + Pi * (sin(sqrt(2)*Pi) + sinh(sqrt(2)*Pi)) / (4*sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = 0.0040926982992862873... . - Vaclav Kotesovec, Feb 14 2015

MATHEMATICA

Table[1-n^8, {n, 0, 40}] (* and *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 0, -255, -6560, -65535, -390624, -1679615, -5764800, -16777215}, 40] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)

PROG

(MAGMA) [1-n^8: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011

(PARI) a(n)=1-n^8 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A024004.

Sequence in context: A022524 A261032 A069093 * A258809 A321553 A321547

Adjacent sequences:  A024003 A024004 A024005 * A024007 A024008 A024009

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 04:20 EST 2019. Contains 329991 sequences. (Running on oeis4.)