login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024003 a(n) = 1 - n^5. 5
1, 0, -31, -242, -1023, -3124, -7775, -16806, -32767, -59048, -99999, -161050, -248831, -371292, -537823, -759374, -1048575, -1419856, -1889567, -2476098, -3199999, -4084100, -5153631, -6436342, -7962623, -9765624, -11881375, -14348906, -17210367, -20511148 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..555

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

From G. C. Greubel, May 11 2017: (Start)

G.f.: (1 - 6*x - 16*x^2 - 76*x^3 - 21*x^4 - 2*x^5)/(1 - x)^6.

E.g.f.: (1 - x - 15*x^2 - 25*x^3 - 10*x^4 - x^5)*exp(x). (End)

MATHEMATICA

1-Range[0, 50]^5 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)

CoefficientList[Series[(1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 0, -31, -242, -1023, -3124}, 30] (* Harvey P. Dale, May 18 2019 *)

PROG

(MAGMA) [1-n^5: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011

(PARI) x='x+O('x^50); Vec((1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6) \\ G. C. Greubel, May 11 2017

CROSSREFS

Cf. A024049.

Sequence in context: A272162 A189923 A059378 * A258807 A221848 A284926

Adjacent sequences:  A024000 A024001 A024002 * A024004 A024005 A024006

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Harvey P. Dale, Feb 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 10:09 EST 2019. Contains 329334 sequences. (Running on oeis4.)