login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024003
a(n) = 1 - n^5.
5
1, 0, -31, -242, -1023, -3124, -7775, -16806, -32767, -59048, -99999, -161050, -248831, -371292, -537823, -759374, -1048575, -1419856, -1889567, -2476098, -3199999, -4084100, -5153631, -6436342, -7962623, -9765624, -11881375, -14348906, -17210367, -20511148
OFFSET
0,3
FORMULA
From G. C. Greubel, May 11 2017: (Start)
G.f.: (1 - 6*x - 16*x^2 - 76*x^3 - 21*x^4 - 2*x^5)/(1 - x)^6.
E.g.f.: (1 - x - 15*x^2 - 25*x^3 - 10*x^4 - x^5)*exp(x). (End)
MATHEMATICA
1-Range[0, 50]^5 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
CoefficientList[Series[(1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 0, -31, -242, -1023, -3124}, 30] (* Harvey P. Dale, May 18 2019 *)
PROG
(Magma) [1-n^5: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(PARI) x='x+O('x^50); Vec((1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6) \\ G. C. Greubel, May 11 2017
CROSSREFS
Cf. A024049.
Sequence in context: A338893 A189923 A059378 * A258807 A358934 A221848
KEYWORD
sign,easy
EXTENSIONS
More terms from Harvey P. Dale, Feb 22 2016
STATUS
approved