login
A024003
a(n) = 1 - n^5.
5
1, 0, -31, -242, -1023, -3124, -7775, -16806, -32767, -59048, -99999, -161050, -248831, -371292, -537823, -759374, -1048575, -1419856, -1889567, -2476098, -3199999, -4084100, -5153631, -6436342, -7962623, -9765624, -11881375, -14348906, -17210367, -20511148
OFFSET
0,3
FORMULA
From G. C. Greubel, May 11 2017: (Start)
G.f.: (1 - 6*x - 16*x^2 - 76*x^3 - 21*x^4 - 2*x^5)/(1 - x)^6.
E.g.f.: (1 - x - 15*x^2 - 25*x^3 - 10*x^4 - x^5)*exp(x). (End)
MATHEMATICA
1-Range[0, 50]^5 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
CoefficientList[Series[(1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 0, -31, -242, -1023, -3124}, 30] (* Harvey P. Dale, May 18 2019 *)
PROG
(Magma) [1-n^5: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(PARI) x='x+O('x^50); Vec((1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6) \\ G. C. Greubel, May 11 2017
CROSSREFS
Cf. A024049.
Sequence in context: A338893 A189923 A059378 * A258807 A358934 A221848
KEYWORD
sign,easy
EXTENSIONS
More terms from Harvey P. Dale, Feb 22 2016
STATUS
approved