OFFSET
0,4
COMMENTS
a(n) is the weighted sum over all derangements (permutations with no fixed points) of n elements where each permutation with an odd number of cycles has weight +1 and each with an even number of cycles has weight -1. [Michael Somos, Jan 19 2011]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
E.g.f.: (1-x)*exp(x).
a(n) = Sum_{k=0..n} A094816(n,k)*(-1)^k (alternating row sums of Poisson-Charlier coefficient matrix).
O.g.f.: (1-2*x)/(1-x)^2. a(n+1) = A001489(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1)-a(n-2) for n>1. - Wesley Ivan Hurt, Mar 02 2016
EXAMPLE
a(4) = -3 because there are 6 derangements with one 4-cycle with weight -1 and 3 derangements with two 2-cycles with weight +1. - Michael Somos, Jan 19 2011
MAPLE
MATHEMATICA
CoefficientList[Series[(1 - 2 x)/(1 - x)^2, {x, 0, 60}], x] Range[0, 60]!
CoefficientList[Series[Exp[x] (1 - x), {x, 0, 60}], x]
1-Range[0, 60] (* Harvey P. Dale, Sep 18 2013 *)
Flatten[NestList[(#/.x_/; x>1->Sequence[x, 2x])-1&, {1}, 60]]
(* Robert G. Wilson v, Mar 02 2016 *)
PROG
(PARI) {a(n) = 1 - n} /* Michael Somos, Jan 19 2011 */
(Magma) [1-n: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
CROSSREFS
KEYWORD
sign,easy
AUTHOR
STATUS
approved