login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024000
a(n) = 1 - n.
15
1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55, -56
OFFSET
0,4
COMMENTS
a(n) is the weighted sum over all derangements (permutations with no fixed points) of n elements where each permutation with an odd number of cycles has weight +1 and each with an even number of cycles has weight -1. [Michael Somos, Jan 19 2011]
FORMULA
E.g.f.: (1-x)*exp(x).
a(n) = Sum_{k=0..n} A094816(n,k)*(-1)^k (alternating row sums of Poisson-Charlier coefficient matrix).
O.g.f.: (1-2*x)/(1-x)^2. a(n+1) = A001489(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1)-a(n-2) for n>1. - Wesley Ivan Hurt, Mar 02 2016
EXAMPLE
a(4) = -3 because there are 6 derangements with one 4-cycle with weight -1 and 3 derangements with two 2-cycles with weight +1. - Michael Somos, Jan 19 2011
MAPLE
A024000:=n->1-n: seq(A024000(n), n=0..100); # Wesley Ivan Hurt, Mar 02 2016
MATHEMATICA
CoefficientList[Series[(1 - 2 x)/(1 - x)^2, {x, 0, 60}], x] Range[0, 60]!
CoefficientList[Series[Exp[x] (1 - x), {x, 0, 60}], x]
1-Range[0, 60] (* Harvey P. Dale, Sep 18 2013 *)
Flatten[NestList[(#/.x_/; x>1->Sequence[x, 2x])-1&, {1}, 60]]
(* Robert G. Wilson v, Mar 02 2016 *)
PROG
(PARI) {a(n) = 1 - n} /* Michael Somos, Jan 19 2011 */
(Magma) [1-n: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
CROSSREFS
Sequence in context: A056064 A274055 A167976 * A181983 A274922 A374157
KEYWORD
sign,easy
STATUS
approved