OFFSET
0,3
COMMENTS
Number of games of simple patience with n cards. Take a shuffled deck of n cards labeled 1..n; as each card is dealt it is placed either on a higher-numbered card or starts a new pile to the right. Cards are not moved once they are placed. Suggested by reading Aldous and Diaconis. - N. J. A. Sloane, Dec 19 1999
Number of set partitions of [2n] such that within each block the numbers of odd and even elements are equal. a(2) = 3: 1234, 12|34, 14|23; a(3) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34. - Alois P. Heinz, Jul 14 2016
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..300
M. Aguiar and R. C. Orellana, The Hopf algebra of uniform block permutations, J. Algebr. Comb. 28 (2008) 115-138
D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999), 413-432.
H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
Fabian Faulstich, Bernd Sturmfels, and Svala Sverrisdóttir, Algebraic Varieties in Quantum Chemistry, arXiv:2308.05258 [math.AG], 2023.
D. G. FitzGerald and Jonathan Leech, Dual symmetric inverse monoids and representation theory, J. Australian Mathematical Society (Series A), Vol. 64 (1998), pp. 345-367.
Raúl E. González-Torres, A geometric study of cores of idempotent stochastic matrices, Linear Algebra Appl. 527, 87-127 (2017).
Rosa Orellana, Franco Saliola, Anne Schilling, and Mike Zabrocki, The lattice of submonoids of the uniform block permutations containing the symmetric group, arXiv:2405.09710 [math.CO], 2024. See p. 3.
Sebastian Volz, Design and Implementation of Efficient Algorithms for Operations on Partitions of Sets, Bachelor Thesis, Saarland Univ. (Germany, 2023). See p. 45.
FORMULA
a(n) = Sum_{k=0..n-1} C(n,k)*C(n-1,k)*a(k) for n>0 with a(0)=1. - Paul D. Hanna, Aug 15 2007
G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = exp( Sum_{n>=1} x^n/n!^2 ). [Paul D. Hanna, Jan 04 2011; merged from duplicate entry A179119]
Row sums of A061691.
Generating function: Let J(z) = Sum_{n>=0} z^n/n!^2. Then exp(x*(J(z)-1) = Sum_{n>=0} a(n)*z^n/n!^2 = 1 + z + 3*z^2/2!^2 + 36*z^3/3!^2 + .... - Peter Bala, Jul 11 2011
EXAMPLE
For n=3 there are 25 block permutations, of which 9 of the form ({1} maps to {1,2}; {2,3} maps to {3}), are not uniform. Hence a(3) = 25 - 9 = 16.
Alternatively, for n=3 the 6 permutations of 3 cards produce 16 games, as follows: 123 -> {1,2,3}; 132 -> {1,32}, {1,3,2}; 213 -> {21,3}, {2,1,3}; 231 -> {21,3}, {2,31}, {2,3,1}; 312 -> {31,2}, {32,1}, {3,1,2}; 321 -> {321}, {32,1}, {31,2}, {3,21}, {3,2,1}.
G.f.: A(x) = 1 + x + 3*x^2/2!^2 + 16*x^3/3!^2 + 131*x^4/4!^2 + 1496*x^5/5!^2 + ...
log(A(x)) = x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 + x^5/5!^2 + ...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)*binomial(n-1, i-1)/i!, i=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[n-1, k] a[k], {k, 0, n-1}];
Array[a, 25, 0] (* Jean-François Alcover, Jul 28 2016 *)
nmax = 20; CoefficientList[Series[E^(-1 + BesselI[0, 2*Sqrt[x]]), {x, 0, nmax}], x]*Range[0, nmax]!^2 (* Vaclav Kotesovec, Jun 09 2019 *)
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n-1, k)*a(k))) \\ Paul D. Hanna, Aug 15 2007
(PARI) {a(n)=n!^2*polcoeff(exp(sum(m=1, n, x^m/m!^2)+x*O(x^n)), n)} /* Paul D. Hanna */
(PARI) N=66; x='x+O('x^N); /* that many terms */
Vec(serlaplace(serlaplace(exp(sum(n=1, N, x^n/n!^2))))) /* show terms */
/* Joerg Arndt, Jul 12 2011 */
(PARI)
v=vector(N); v[1]=1;
for (n=1, N-1, v[n+1]=sum(k=0, n-1, binomial(n, k)*binomial(n-1, k)*v[k+1]) );
v /* show terms */
/* Joerg Arndt, Jul 12 2011 */
(Haskell)
a023998 n = a023998_list !! n
a023998_list = 1 : f 2 [1] a132813_tabl where
f x ys (zs:zss) = y : f (x + 1) (ys ++ [y]) zss where
y = sum $ zipWith (*) ys zs
-- Reinhard Zumkeller, Apr 04 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Des FitzGerald (D.FitzGerald(AT)utas.edu.au)
EXTENSIONS
More terms from Vladeta Jovovic, Sep 03 2002
STATUS
approved