login
A275043
Number A(n,k) of set partitions of [k*n] such that within each block the numbers of elements from all residue classes modulo k are equal for k>0, A(n,0)=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
15
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 5, 16, 15, 1, 1, 1, 9, 64, 131, 52, 1, 1, 1, 17, 298, 1613, 1496, 203, 1, 1, 1, 33, 1540, 25097, 69026, 22482, 877, 1, 1, 1, 65, 8506, 461105, 4383626, 4566992, 426833, 4140, 1, 1, 1, 129, 48844, 9483041, 350813126, 1394519922, 437665649, 9934563, 21147, 1
OFFSET
0,9
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
EXAMPLE
A(2,2) = 3: 1234, 12|34, 14|23.
A(2,3) = 5: 123456, 123|456, 126|345, 135|246, 156|234.
A(2,4) = 9: 12345678, 1234|5678, 1238|4567, 1247|3568, 1278|3456, 1346|2578, 1368|2457, 1467|2358, 1678|2345.
A(3,2) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 5, 9, 17, 33, ...
1, 5, 16, 64, 298, 1540, 8506, ...
1, 15, 131, 1613, 25097, 461105, 9483041, ...
1, 52, 1496, 69026, 4383626, 350813126, 33056715626, ...
1, 203, 22482, 4566992, 1394519922, 573843627152, 293327384637282, ...
MAPLE
A:= proc(n, k) option remember; `if`(k*n=0, 1, add(
binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[k*n == 0, 1, Sum[Binomial[n, j]^k*(n-j)*A[j, k], {j, 0, n-1}]/n]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)
CROSSREFS
Rows n=0+1,2-5 give: A000012, A094373, A275100, A275101, A275102.
Main diagonal gives A275044.
Cf. A345400.
Sequence in context: A368025 A290759 A306245 * A227061 A201949 A291709
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 14 2016
STATUS
approved