OFFSET
0,9
COMMENTS
LINKS
Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
Jishe Feng, The explicit formula of Hankel determinant with Catalan elements, arXiv:2010.06586 [math.GM], 2020.
M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
Wikipedia, Hankel matrix.
FORMULA
EXAMPLE
The array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, 42, 132, ...
1, 1, 3, 14, 84, 594, 4719, ...
1, 1, 4, 30, 330, 4719, 81796, ...
1, 1, 5, 55, 1001, 26026, 884884, ...
1, 1, 6, 91, 2548, 111384, 6852768, ...
1, 1, 7, 140, 5712, 395352, 41314284, ...
...
MAPLE
A:= proc(n, k) option remember; `if`(k=0, 1, 2^n*mul(
(2*(k-i)+2*n-3)/(k+2*n-1-i), i=0..n-1)*A(n, k-1))
end:
seq(seq(A(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Dec 20 2023
MATHEMATICA
A[n_, k_]:=If[n==0, 1, Det[Table[CatalanNumber[i+j+k], {i, 0, n-1}, {j, 0, n-1}]]]; Table[A[n-k, k], {n, 0, 11}, {k, 0, n}]//Flatten
CROSSREFS
Antidiagonal sums give A355503.
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Dec 08 2023
STATUS
approved