|
|
A006149
|
|
Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.
(Formerly M3634)
|
|
7
|
|
|
1, 1, 4, 30, 330, 4719, 81796, 1643356, 37119160, 922268360, 24801924512, 713055329720, 21706243125300, 694280570551875, 23188541161342500, 804601696647424500, 28880966163870711000, 1068595748063216307000, 40631980618055892780000, 1583603339463794983230000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the determinant of the 3 X 3 Hankel matrix [a_0, a_1, a_2 ; a_1, a_2, a_3 ; a_2, a_3, a_4] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007
Third subdiagonal in A123352, equivalent to the 6th subdiagonal in A185249, its "aerated" version with additional subdiagonals entirely filled with zeros. - R. J. Mathar, Feb 18 2011
|
|
REFERENCES
|
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire. Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Hypergeometric 4_F_3 ( [ 1, 1/2, 5/2, 3/2 ]; [ 4, 5, 6 ]; 64 x ).
a(n) = Det[Table[binomial[i+2, j-i+3], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = 720 (2*n)! (2*n+2)! (2*n+4)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)!). - Steven Finch, Mar 30 2008
(n+5)*(n+4)*(n+3)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 27 2018
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j - 1) for n >= 1. (End)
a(n) ~ 45 * 2^(6*n + 10) / (Pi^(3/2) * n^(21/2)). - Vaclav Kotesovec, Feb 23 2023
|
|
MAPLE
|
seq(6!*(2*n)!*(2*n+2)!*(2*n+4)!/mul((n+j)!, j=0..5), n=0..20); # G. C. Greubel, Aug 28 2019
|
|
MATHEMATICA
|
Table[6!*(2*n)!*(2*n+2)!*(2*n+4)!/Product[(n+j)!, {j, 0, 5}], {n, 0, 20}] (* G. C. Greubel, Aug 28 2019 *)
|
|
PROG
|
(PARI) vector(20, n, 6!*(2*n-2)!*(2*n)!*(2*n+2)!/prod(j=0, 5, (n+j-1)!) ) \\ G. C. Greubel, Aug 28 2019
(Magma) F:=Factorial; [F(6)*F(2*n)*F(2*n+2)*F(2*n+4)/&*[F(n+j): j in [0..5]] : n in [0..20]]; // G. C. Greubel, Aug 28 2019
(Sage) f=factorial; [f(6)*f(2*n)*f(2*n+2)*f(2*n+4)/product(f(n+j) for j in (0..5)) for n in (0..20)] # G. C. Greubel, Aug 28 2019
(GAP) F:=Factorial;; List([0..20], n-> F(6)*F(2*n)*F(2*n+2)*F(2*n+4) /Product([0..5], j-> F(n+j) ) ); # G. C. Greubel, Aug 28 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|