login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.
(Formerly M3634)
9

%I M3634 #70 Sep 20 2024 04:14:17

%S 1,1,4,30,330,4719,81796,1643356,37119160,922268360,24801924512,

%T 713055329720,21706243125300,694280570551875,23188541161342500,

%U 804601696647424500,28880966163870711000,1068595748063216307000,40631980618055892780000,1583603339463794983230000

%N Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

%C a(n) is the determinant of the 3 X 3 Hankel matrix [a_0, a_1, a_2 ; a_1, a_2, a_3 ; a_2, a_3, a_4] with a_j=A000108(n+j). - _Philippe Deléham_, Apr 12 2007

%C Third subdiagonal in A123352, equivalent to the 6th subdiagonal in A185249, its "aerated" version with additional subdiagonals entirely filled with zeros. - _R. J. Mathar_, Feb 18 2011

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).

%D M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A006149/b006149.txt">Table of n, a(n) for n = 0..564</a>

%H Myriam de Sainte-Catherine, <a href="/A005700/a005700_1.pdf">Couplages et Pfaffiens en Combinatoire, Physique et Informatique</a>, PhD Dissertation, Université Bordeaux I, 1983. (Annotated scanned copy of pages III.42-III.45)

%H Nicholas M. Katz, <a href="https://web.math.princeton.edu/~nmk/catalan11.pdf">A Note on Random Matrix Integrals, Moment Identities, and Catalan Numbers</a>, 2015.

%F G.f.: Hypergeometric 4_F_3 ( [ 1, 1/2, 5/2, 3/2 ]; [ 4, 5, 6 ]; 64 x ).

%F a(n) = Det[Table[binomial[i+2, j-i+3], {i, 1, n}, {j, 1, n}]]. - _David Callan_, Jul 20 2005

%F a(n) = 720 (2*n)! (2*n+2)! (2*n+4)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)!). - _Steven Finch_, Mar 30 2008

%F (n+5)*(n+4)*(n+3)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - _R. J. Mathar_, Feb 27 2018

%F From _Peter Bala_, Feb 22 2023: (Start)

%F a(n) = Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j).

%F a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j - 1) for n >= 1. (End)

%F a(n) ~ 45 * 2^(6*n + 10) / (Pi^(3/2) * n^(21/2)). - _Vaclav Kotesovec_, Feb 23 2023

%p seq(6!*(2*n)!*(2*n+2)!*(2*n+4)!/mul((n+j)!, j=0..5), n=0..20); # _G. C. Greubel_, Aug 28 2019

%t Table[6!*(2*n)!*(2*n+2)!*(2*n+4)!/Product[(n+j)!, {j,0,5}], {n,0,20}] (* _G. C. Greubel_, Aug 28 2019 *)

%o (PARI) vector(20, n, 6!*(2*n-2)!*(2*n)!*(2*n+2)!/prod(j=0,5, (n+j-1)!) ) \\ _G. C. Greubel_, Aug 28 2019

%o (Magma) F:=Factorial; [F(6)*F(2*n)*F(2*n+2)*F(2*n+4)/&*[F(n+j): j in [0..5]] : n in [0..20]]; // _G. C. Greubel_, Aug 28 2019

%o (Sage) f=factorial; [f(6)*f(2*n)*f(2*n+2)*f(2*n+4)/product(f(n+j) for j in (0..5)) for n in (0..20)] # _G. C. Greubel_, Aug 28 2019

%o (GAP) F:=Factorial;; List([0..20], n-> F(6)*F(2*n)*F(2*n+2)*F(2*n+4) /Product([0..5], j-> F(n+j) ) ); # _G. C. Greubel_, Aug 28 2019

%Y Cf. A000108, A005700, A006150, A006151.

%Y Column k=3 of A078920.

%Y Diagonal of A123352 and of A185249.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, _Simon Plouffe_

%E Name clarified by _Alois P. Heinz_, Feb 24 2023