OFFSET
1,2
COMMENTS
a(n) is the number of labeled rooted trees with every non-root vertex of degree 1 or 2. - Geoffrey Critzer, May 21 2012.
Total number of unit length lists in all sets of lists, cf. A000262. - Alois P. Heinz, May 10 2016
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
S. Getu and L. W. Shapiro, Combinatorial view of the composition of functions, Ars Combin. 10 (1980), 131-145. (Annotated scanned copy)
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 156
FORMULA
a(n) = n*A000262(n-1).
D-finite with recurrence a(n) = 2*(n-1)*a(n-1)-(n^2-5*n+5)*a(n-2)-(n-4)*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 05 2012
a(n) ~ n^(n-1/4)*exp^(2*sqrt(n)-n-1/2)/sqrt(2). - Vaclav Kotesovec, Oct 05 2012
a(n) = A320264(n+1,n). - Alois P. Heinz, Oct 08 2018
MATHEMATICA
nn = 17; a = x/(1 - x);
Range[0, nn]! CoefficientList[Series[x Exp[a], {x, 0, nn}], x] (* Geoffrey Critzer, May 21 2012 *)
PROG
(PARI) a(n)=n!*polcoeff(x*exp(x/(1-x)+O(x^n)), n)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Michael Somos, Jun 07 2000
STATUS
approved