login
A006152
Exponential generating function x*exp(x/(1-x)).
(Formerly M1939)
8
1, 2, 9, 52, 365, 3006, 28357, 301064, 3549177, 45965530, 648352001, 9888877692, 162112109029, 2841669616982, 53025262866045, 1049180850990736, 21937381717388657, 483239096122434354, 11184035897992673017, 271287473871771163460, 6881656485607798743261
OFFSET
1,2
COMMENTS
a(n) is the number of labeled rooted trees with every non-root vertex of degree 1 or 2. - Geoffrey Critzer, May 21 2012.
Total number of unit length lists in all sets of lists, cf. A000262. - Alois P. Heinz, May 10 2016
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Getu and L. W. Shapiro, Combinatorial view of the composition of functions, Ars Combin. 10 (1980), 131-145. (Annotated scanned copy)
FORMULA
a(n) = n*A000262(n-1).
D-finite with recurrence a(n) = 2*(n-1)*a(n-1)-(n^2-5*n+5)*a(n-2)-(n-4)*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 05 2012
a(n) ~ n^(n-1/4)*exp^(2*sqrt(n)-n-1/2)/sqrt(2). - Vaclav Kotesovec, Oct 05 2012
a(n) = A320264(n+1,n). - Alois P. Heinz, Oct 08 2018
MATHEMATICA
nn = 17; a = x/(1 - x);
Range[0, nn]! CoefficientList[Series[x Exp[a], {x, 0, nn}], x] (* Geoffrey Critzer, May 21 2012 *)
PROG
(PARI) a(n)=n!*polcoeff(x*exp(x/(1-x)+O(x^n)), n)
CROSSREFS
Sequence in context: A305987 A355789 A231494 * A369551 A143508 A052882
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Michael Somos, Jun 07 2000
STATUS
approved