login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355789
E.g.f. satisfies log(A(x)) = (1 - exp(-2*x)) * A(x)/2.
1
1, 1, 1, 2, 9, 52, 363, 3082, 30817, 353640, 4582451, 66201126, 1055059569, 18388749628, 347959910171, 7104264359810, 155670829426113, 3644019928871376, 90755590315468003, 2396199304577668190, 66855611152288637713, 1965490144910199279780
OFFSET
0,4
FORMULA
E.g.f.: exp( -LambertW((exp(-2*x) - 1)/2) ).
a(n) = Sum_{k=0..n} (-2)^(n-k) * (k+1)^(k-1) * Stirling2(n,k).
From Vaclav Kotesovec, Jul 18 2022: (Start)
E.g.f.: 2*LambertW((exp(-2*x) - 1)/2) / (exp(-2*x) - 1).
a(n) ~ sqrt(exp(1)/2 - 1) * sqrt(-log(1 - 2*exp(-1))) * 2^n * n^(n-1) / (exp(n-1) * (1 - log(exp(1) - 2))^n). (End)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw((exp(-2*x)-1)/2))))
(PARI) a(n) = sum(k=0, n, (-2)^(n-k)*(k+1)^(k-1)*stirling(n, k, 2));
CROSSREFS
Sequence in context: A301928 A069271 A305987 * A231494 A006152 A369551
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 17 2022
STATUS
approved