The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355789 E.g.f. satisfies log(A(x)) = (1 - exp(-2*x)) * A(x)/2. 1
 1, 1, 1, 2, 9, 52, 363, 3082, 30817, 353640, 4582451, 66201126, 1055059569, 18388749628, 347959910171, 7104264359810, 155670829426113, 3644019928871376, 90755590315468003, 2396199304577668190, 66855611152288637713, 1965490144910199279780 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA E.g.f.: exp( -LambertW((exp(-2*x) - 1)/2) ). a(n) = Sum_{k=0..n} (-2)^(n-k) * (k+1)^(k-1) * Stirling2(n,k). From Vaclav Kotesovec, Jul 18 2022: (Start) E.g.f.: 2*LambertW((exp(-2*x) - 1)/2) / (exp(-2*x) - 1). a(n) ~ sqrt(exp(1)/2 - 1) * sqrt(-log(1 - 2*exp(-1))) * 2^n * n^(n-1) / (exp(n-1) * (1 - log(exp(1) - 2))^n). (End) PROG (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw((exp(-2*x)-1)/2)))) (PARI) a(n) = sum(k=0, n, (-2)^(n-k)*(k+1)^(k-1)*stirling(n, k, 2)); CROSSREFS Cf. A058864, A355782. Sequence in context: A301928 A069271 A305987 * A231494 A006152 A143508 Adjacent sequences: A355786 A355787 A355788 * A355790 A355791 A355792 KEYWORD nonn AUTHOR Seiichi Manyama, Jul 17 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 8 23:03 EST 2023. Contains 360153 sequences. (Running on oeis4.)