login
A006154
Number of labeled ordered partitions of an n-set into odd parts.
(Formerly M1792)
37
1, 1, 2, 7, 32, 181, 1232, 9787, 88832, 907081, 10291712, 128445967, 1748805632, 25794366781, 409725396992, 6973071372547, 126585529106432, 2441591202059281, 49863806091395072, 1074927056650469527, 24392086908129247232, 581176736647853024581
OFFSET
0,3
COMMENTS
Conjecture: taking the sequence modulo an integer k gives an eventually periodic sequence. For example, the sequence taken modulo 10 is [1, 1, 2, 7, 2, 1, 2, 7, 2, 1, 2, 7, 2, ...], with an apparent period [1, 2, 7, 2] beginning at a(1), of length 4. Cf. A000670. - Peter Bala, Apr 12 2023
REFERENCES
Getu, S.; Shapiro, L. W.; Combinatorial view of the composition of functions. Ars Combin. 10 (1980), 131-145.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Philippe Flajolet, Symbolic Enumerative Combinatorics and Complex Asymptotic Analysis, Algorithms Seminar 2000-2001, F. Chyzak (ed.), INRIA, (2002), pp. 161-170.
Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 8.
FORMULA
E.g.f.: 1/(1 - sinh(x)).
With alternating signs, e.g.f.: 1/(1+sinh(x)). - Ralf Stephan, Apr 29 2004
a(0) = a(1) = 1, a(n) = Sum_{k=1..ceiling(n/2)} C(n,2*k-1)*a(n-2*k+1). - Ralf Stephan, Apr 29 2004
a(n) ~ (sqrt(2)/2)*n!/log(1+sqrt(2))^(n+1). - Conjectured by Simon Plouffe, Feb 17 2007.
From Andrew Hone, Feb 22 2007: (Start)
This formula can be proved using the techniques in the article by Philippe Flajolet (see links) [see Theorem 5 and Table 2, noting that 1/(1-sinh(x)) just has a simple pole at x=log(1+sqrt(2))]. (End)
a(n) = Sum_{k=1..n} Sum_{i=0..k} (-1)^i*(k-2*i)^n*binomial(k,i)/2^k, n > 0, a(0)=1. - Vladimir Kruchinin, May 28 2011
Row sums (apart from a(0)) of A196776. - Peter Bala, Oct 06 2011
Row sums of A193474. - Peter Luschny, Oct 07 2011
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+x^2)*d/dx. Cf. A003724 and A000111. - Peter Bala, Dec 06 2011
From Sergei N. Gladkovskii, Jun 01 2012: (Start)
Let E(x) be the e.g.f., then
E(x) = -1/x + 1/(x*(1-x))+ x^3/((1-x)*((1-x)*G(0) - x^2)); G(k) = (2*k+2)*(2*k+3)+x^2-(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction).
E(x) = -1/x + 1/(x*(1-x))+ x^3/((1-x)*((1-x)*G(0) - x^2)); G(k) = 8*k+6+x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction).
E(x) = 1/(1 - x*G(0)); G(k) = 1 + x^2/(2*(2*k+1)*(4*k+3) + 2*x^2*(2*k+1)*(4*k+3)/(-x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction).
(End).
E.g.f. 1/(1 - x*G(0)) where G(k) = 1 - x^2/( (2*k+1)*(2*k+3) - 2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 01 2012
O.g.f A(x) satisfies A(x) = 1 + ( A(x/(1-x))/(1-x) - A(x/(1+x))/(1+x) )/2. - Paul D. Hanna, Aug 19 2024
MAPLE
readlib(coeftayl):
with(combinat, bell);
A:=series(1/(1-sinh(x)), x, 20);
G(x):=A : f[0]:=G(x): for n from 0 to 21 do f[n]:=coeftayl(G(x), x=0, n);;
p[n]:=f[n]*((n)!) od: x:=0:seq(p[n], n=0..20); # Sergei N. Gladkovskii, Jun 01 2012
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add((i->
a(n-i)*binomial(n, i))(2*j+1), j=0..(n-1)/2))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 01 2022
MATHEMATICA
a[n_] := Sum[ (-1)^i*(k - 2*i)^n*Binomial[k, i]/2^k, {k, 1, n}, {i, 0, k}]; a[0] = 1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 07 2011, after Vladimir Kruchinin *)
With[{nn=20}, CoefficientList[Series[1/(1-Sinh[x]), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Nov 16 2012 *)
PROG
(PARI) a(n)=if(n<2, n>=0, sum(k=1, ceil(n/2), binomial(n, 2*k-1)*a(n-2*k+1))) \\ Ralf Stephan
(Maxima) a(n):=sum(sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k)/2^k, k, 1, n); /* Vladimir Kruchinin, May 28 2011 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Oct 15 1999
STATUS
approved