login
A198891
Expansion of e.g.f. 1 / [ Sum_{n>=0} (-x)^(n*(n+1)/2) / (n*(n+1)/2)! ].
2
1, 1, 2, 7, 32, 180, 1219, 9646, 87192, 886536, 10016159, 124481258, 1687686528, 24787991800, 392081193504, 6644677619581, 120115898158288, 2307044712629472, 46917527736860976, 1007152702625923440, 22757886107313170356, 539955309450787483261, 13421068671117864869156
OFFSET
0,3
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 32*x^4/4! + 180*x^5/5! + ... + a(n)*x^n/n! + ...
where
1/A(x) = 1 - x - x^3/3! + x^6/6! + x^10/10! - x^15/15! - x^21/21! ++-- ... + (-x)^(n*(n+1)/2)/(n*(n+1)/2)! + ...
1/A(x) = 1 - x - x^3/6 + x^6/720 + x^10/3628800 - x^15/1307674368000 + ...
PROG
(PARI) {a(n) = my(A=1/sum(m=0, sqrtint(2*n+1), (-x)^(m*(m+1)/2)/(m*(m+1)/2)!+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A198892.
Sequence in context: A097900 A373772 A375395 * A000153 A006154 A352435
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 30 2011
STATUS
approved