login
A006957
Self-convolution of numbers of preferential arrangements.
5
1, 2, 7, 32, 185, 1310, 11067, 109148, 1234045, 15752858, 224169407, 3518636504, 60381131265, 1124390692886, 22577494959427, 486212633129300, 11177317486573445, 273173247028616594, 7072436847620016327, 193351544314753174736, 5565941751233499986185
OFFSET
0,2
LINKS
FORMULA
a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 08 2014
G.f.: (Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - k*x))^2. - Ilya Gutkovskiy, Apr 06 2019
MAPLE
f:= proc(n) option remember; `if`(n<=1, 1,
add(binomial(n, k) *f(n-k), k=1..n))
end:
a:= n-> add(f(k)*f(n-k), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 02 2009
MATHEMATICA
t[n_] := Sum[StirlingS2[n, k]*k!, {k, 0, n}]; Table[Sum[t[k]*t[n-k], {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Apr 09 2014, after Emanuele Munarini *)
PROG
(Maxima) t(n):=sum(stirling2(n, k)*k!, k, 0, n);
makelist(sum(t(k)*t(n-k), k, 0, n), n, 0, 20); /* Emanuele Munarini, Oct 02 2012 */
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Alois P. Heinz, Feb 02 2009
STATUS
approved