login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195983
G.f.: Product_{n>=1} [Product_{k=0..2*n} (1 - k*x)^(-(-1)^k*binomial(2*n,k))]^(1/n).
2
1, 0, 1, 2, 7, 32, 189, 1382, 12090, 123220, 1433760, 18750856, 272243150, 4344694984, 75590125814, 1423923579636, 28872306351182, 626986388773656, 14518030696953650, 357068944503961140, 9296168815245928682, 255409012110904594768, 7385107814017356745382
OFFSET
0,4
COMMENTS
Compare g.f. to the product:
_ exp(x) = Product_{n>=1} [Product_{k=0..n} (1 + k*x)^(-(-1)^k*binomial(n,k))]^(1/n),
more explicitly:
_ exp(x) = [(1+x)^1/(1+0*x)^1] * [(1+x)^2/((1+0*x)^1*(1+2*x)^1)]^(1/2) * [(1+x)^3*(1+3*x)^1/((1+0*x)^1*(1+2*x)^3)]^(1/3) * [(1+x)^4*(1+3*x)^4/((1+0*x)^1*(1+2*x)^6*(1+4*x)^1)]^(1/4) * ...
LINKS
FORMULA
G.f.: A(x) = exp( Sum_{n>=1} 2*A000670(n)*x^(n+1)/(n+1) ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x).
a(n) ~ n! / (n^2 * (log(2))^n). - Vaclav Kotesovec, Nov 19 2014
EXAMPLE
G.f.: A(x) = 1 + x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 189*x^6 + 1382*x^7 +...
where
A(x) = [(1-x)^2/((1-0*x)^1*(1-2*x)^1)] * [(1-x)^4*(1-3*x)^4/((1-0*x)^1*(1-2*x)^6*(1-4*x)^1)]^(1/2) * [(1-x)^6*(1-3*x)^20*(1-5*x)^6/((1-0*x)^1*(1-2*x)^15*(1-4*x)^15*(1-6*x)^1)]^(1/3) * ...
Also,
log(A(x)) = 2*x^2/2 + 6*x^3/3 + 26*x^4/4 + 150*x^5/5 + 1082*x^6/6 + 9366*x^7/7 +...+ 2*A000670(n)*x^(n+1)/(n+1) +...
thus, the logarithmic derivative equals the series:
A'(x)/A(x) = 2*x/(1-x) + 2*2!*x^2/((1-x)*(1-2*x)) + 2*3!*x^3/((1-x)*(1-2*x)*(1-3*x)) + 2*4!*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +...
PROG
(PARI) {a(n)=polcoeff(prod(m=1, n, prod(k=1, 2*m, (1-k*x+x*O(x^n))^(-(-1)^k*binomial(2*m, k)/m))), n)}
(PARI) /* Using o.g.f. exp( Sum_{n>=1} 2*A000670(n)*x^(n+1)/(n+1) ): */
{a(n)=polcoeff(exp(intformal(2*sum(m=1, n+1, m!*x^m/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}
CROSSREFS
Sequence in context: A000987 A006957 A189780 * A079265 A270229 A112006
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 25 2011
STATUS
approved