OFFSET
0,5
COMMENTS
All the terms after the first are negative.
LINKS
A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003, 2011. Adv. Math. 229 (2012), no. 5, 2603-2621.
MATHEMATICA
nmax = 34;
theta0[x_, y_] = Sum[x^n y^(n(n-1)/2), {n, 0, (1/2)(1+Sqrt[1+8nmax]) // Ceiling}];
xi0[y_] = -Sum[a[n] y^n, {n, 0, nmax}];
cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax+1) // Normal // Collect[#, y]&, y];
Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n] , {n, 0, nmax}];
CoefficientList[(-1/xi0[y] /. Array[s, nmax+1, 0]) + O[y]^(nmax+1), y](* Jean-François Alcover, Sep 05 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Sep 25 2011, Feb 01 2012
STATUS
approved