login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195981
Coefficients of expansion of 1/xi_0(y) (see A195980 for definition).
3
1, -1, -1, -1, -2, -4, -10, -25, -66, -178, -490, -1370, -3881, -11113, -32115, -93542, -274332, -809377, -2400641, -7154066, -21409915, -64317898, -193886665, -586311736, -1778101466, -5406660260, -16479943037, -50344990445, -154120149335, -472717222756, -1452529814867, -4470733286364, -13782117172530, -42549485082664, -131545321942331
OFFSET
0,5
COMMENTS
All the terms after the first are negative.
LINKS
A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003, 2011. Adv. Math. 229 (2012), no. 5, 2603-2621.
MATHEMATICA
nmax = 34;
theta0[x_, y_] = Sum[x^n y^(n(n-1)/2), {n, 0, (1/2)(1+Sqrt[1+8nmax]) // Ceiling}];
xi0[y_] = -Sum[a[n] y^n, {n, 0, nmax}];
cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax+1) // Normal // Collect[#, y]&, y];
Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n] , {n, 0, nmax}];
CoefficientList[(-1/xi0[y] /. Array[s, nmax+1, 0]) + O[y]^(nmax+1), y](* Jean-François Alcover, Sep 05 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Sep 25 2011, Feb 01 2012
STATUS
approved