login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195979 a(n) = Sum_{k=0..n} T(n,k), where T(n,k) is the number of rooted labeled trees with n nodes whose maximal decreasing subtree has k nodes. 1
1, 2, 8, 53, 497, 6027, 89595, 1576682, 32047986, 738772383, 19042778713, 542704904381, 16944005908637, 575128775147734, 21086473359281088, 830481043455973053, 34967280863073327597, 1567405219938012472847, 74521905471659239870631, 3745801599865304794344662 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..100

S. Seo and H. Shin, Another refinement for Rooted Trees, arXiv preprint arXiv:1106.1290, 2011.

FORMULA

Seo and Shin give an e.g.f.

a(n) = exp(1) * Sum_{k>=0} (-1)^k*(n - k)^n/k!. - Ilya Gutkovskiy, Jun 13 2019

MAPLE

T:= (n, k)-> add(binomial(n+1, m+1) *Stirling2(m+1, k+1)

             *(n-k)^(n-m-1) *(m-k), m=k..n):

a:= n-> 1 +add(T(n, k), k=0..n-1):

seq(a(n), n=0..20);  # Alois P. Heinz, Sep 30 2011

MATHEMATICA

T[n_, k_] := Sum[Binomial[n+1, m+1]*StirlingS2[m+1, k+1]*(n-k)^(n-m-1)*(m-k), {m, k, n}]; a[n_] := 1 + Sum[T[n, k], {k, 0, n-1}]; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Mar 07 2014, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A323871 A183945 A193651 * A203109 A197795 A327354

Adjacent sequences:  A195976 A195977 A195978 * A195980 A195981 A195982

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 00:09 EDT 2021. Contains 343685 sequences. (Running on oeis4.)