login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193651 a(n) = ((2*n + 1)!! + 1)/2. 4
1, 2, 8, 53, 473, 5198, 67568, 1013513, 17229713, 327364538, 6874655288, 158117071613, 3952926790313, 106729023338438, 3095141676814688, 95949391981255313, 3166329935381425313, 110821547738349885938, 4100397266318945779688 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Previous name was: Q-residue of the triangle A130534, where Q is the triangular array (t(i,j)) given by t(i,j)=1. For the definition of Q-residue, see A193649.

a(404) has 1002 decimal digits. - Michael De Vlieger, Apr 25 2016

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..403

FORMULA

From Peter Luschny, Aug 20 2014 : (Start)

a(n) = (2^n*Gamma(n+3/2))/sqrt(Pi) + 1/2.

a(n) = 2^n*pochhammer(1/2, n+1) + 1/2.

a(n) = ((2*a(n-1) - 2*a(n-2))*n^2 + a(n-2)*n - a(n-1))/(n-1) for n>1, a(0)=1, a(1)=2. (End)

(-n+1)*a(n) +(2*n^2-1)*a(n-1) -n*(2*n-1)*a(n-2)=0. - R. J. Mathar, Feb 19 2015

E.g.f.: (exp(x) + 1/(1-2*x)^(3/2))/2. - Vladimir Reshetnikov, Apr 25 2016

MAPLE

seq((1+doublefactorial(2*n+1))/2, n=0..18); # Peter Luschny, Aug 20 2014

MATHEMATICA

q[n_, k_] := 1;

r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]

u[0, x_] := 1; u[n_, x_] := (x + n)*u[n - 1, x]

p[n_, k_] := Coefficient[u[n, x], x, k]

v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]

Table[v[n], {n, 0, 18}]    (* A193651 *)

TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]

Table[r[k], {k, 0, 8}]  (* 2^k *)

TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]  (* A130534 *)

Table[((2 n + 1)!! + 1)/2, {n, 0, 18}] (* or *)

Table[(2^n Gamma[n + 3/2])/Sqrt[Pi] + 1/2, {n, 0, 18}] (* or *)

Table[2^n Pochhammer[1/2, n + 1] + 1/2, {n, 0, 18}] (* Michael De Vlieger, Apr 25 2016 *)

PROG

(Sage)

def A():

    n, a, b = 1, 1, 2

    yield a

    while True:

        yield b

        n += 1

        a, b = b, ((2*(b-a)*n + a)*n - b)/(n-1)

A193651 = A()

[next(A193651) for i in range(19)] # Peter Luschny, Aug 20 2014

CROSSREFS

Cf. A001147, A193649, A130534.

Sequence in context: A145157 A323871 A183945 * A195979 A203109 A197795

Adjacent sequences:  A193648 A193649 A193650 * A193652 A193653 A193654

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 02 2011

EXTENSIONS

New name from Peter Luschny, Aug 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 00:09 EDT 2021. Contains 343685 sequences. (Running on oeis4.)