login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{n>=1} [Product_{k=0..2*n} (1 - k*x)^(-(-1)^k*binomial(2*n,k))]^(1/n).
2

%I #20 Nov 19 2014 05:48:10

%S 1,0,1,2,7,32,189,1382,12090,123220,1433760,18750856,272243150,

%T 4344694984,75590125814,1423923579636,28872306351182,626986388773656,

%U 14518030696953650,357068944503961140,9296168815245928682,255409012110904594768,7385107814017356745382

%N G.f.: Product_{n>=1} [Product_{k=0..2*n} (1 - k*x)^(-(-1)^k*binomial(2*n,k))]^(1/n).

%C Compare g.f. to the product:

%C _ exp(x) = Product_{n>=1} [Product_{k=0..n} (1 + k*x)^(-(-1)^k*binomial(n,k))]^(1/n),

%C more explicitly:

%C _ exp(x) = [(1+x)^1/(1+0*x)^1] * [(1+x)^2/((1+0*x)^1*(1+2*x)^1)]^(1/2) * [(1+x)^3*(1+3*x)^1/((1+0*x)^1*(1+2*x)^3)]^(1/3) * [(1+x)^4*(1+3*x)^4/((1+0*x)^1*(1+2*x)^6*(1+4*x)^1)]^(1/4) * ...

%H Vaclav Kotesovec, <a href="/A195983/b195983.txt">Table of n, a(n) for n = 0..320</a>

%F G.f.: A(x) = exp( Sum_{n>=1} 2*A000670(n)*x^(n+1)/(n+1) ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x).

%F a(n) ~ n! / (n^2 * (log(2))^n). - _Vaclav Kotesovec_, Nov 19 2014

%e G.f.: A(x) = 1 + x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 189*x^6 + 1382*x^7 +...

%e where

%e A(x) = [(1-x)^2/((1-0*x)^1*(1-2*x)^1)] * [(1-x)^4*(1-3*x)^4/((1-0*x)^1*(1-2*x)^6*(1-4*x)^1)]^(1/2) * [(1-x)^6*(1-3*x)^20*(1-5*x)^6/((1-0*x)^1*(1-2*x)^15*(1-4*x)^15*(1-6*x)^1)]^(1/3) * ...

%e Also,

%e log(A(x)) = 2*x^2/2 + 6*x^3/3 + 26*x^4/4 + 150*x^5/5 + 1082*x^6/6 + 9366*x^7/7 +...+ 2*A000670(n)*x^(n+1)/(n+1) +...

%e thus, the logarithmic derivative equals the series:

%e A'(x)/A(x) = 2*x/(1-x) + 2*2!*x^2/((1-x)*(1-2*x)) + 2*3!*x^3/((1-x)*(1-2*x)*(1-3*x)) + 2*4!*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +...

%o (PARI) {a(n)=polcoeff(prod(m=1,n,prod(k=1,2*m,(1-k*x+x*O(x^n))^(-(-1)^k*binomial(2*m,k)/m))),n)}

%o (PARI) /* Using o.g.f. exp( Sum_{n>=1} 2*A000670(n)*x^(n+1)/(n+1) ): */

%o {a(n)=polcoeff(exp(intformal(2*sum(m=1, n+1, m!*x^m/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}

%Y Cf. A000670, A084784.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Sep 25 2011