OFFSET
0,3
FORMULA
a(n)= (n-1)!*sum(m=1..n-1, m*(1+(-1)^(n-m))/2*sum(k=1..n-m (sum(j=1..k, binomial(k,j)*2^(1-j)*sum(i=0..floor(j/2), (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)))*binomial(k+n-1,n-1)))+n!, n>0, a(0)=1.
a(n) ~ cos(1) * n! / (sin(1))^(n+1). - Vaclav Kotesovec, Nov 06 2014
MATHEMATICA
CoefficientList[Series[1/(1-ArcSin[t]), {t, 0, 100}], t] Table[
n!, {n, 0, 100}] (* Emanuele Munarini, Nov 23 2015 *)
PROG
(Maxima) a(n):=(n-1)!*sum(m*(1+(-1)^(n-m))/2*sum((sum(binomial(k, j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j, i)*(j-2*i)^(n-m+j)/(n-m+j)!, i, 0, floor(j/2)), j, 1, k))*binomial(k+n-1, n-1), k, 1, n-m), m, 1, n-1)+n!;
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 02 2011
STATUS
approved