OFFSET
0,2
COMMENTS
Sequence extended to n=0 using closed form. (binomial transform of A111883)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
FORMULA
Binomial transform of A111883.
From Vaclav Kotesovec, Oct 01 2017: (Start)
a(n) = (n+1)*a(n-1) + (n-1)^2*a(n-2) - (n-2)*(n-1)^2*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4).
E.g.f.: exp((2-x)*x/(1-x)) / sqrt(1-x^2).
a(n) ~ exp(1/2 + 2*sqrt(n) - n) * n^n / 2.
(End)
MATHEMATICA
a[n_] := Sum[Binomial[n, k]*Abs[HermiteH[k, I/Sqrt[2]]]^2/2^k, {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 01 2017 *)
CoefficientList[Series[E^((2-x)*x/(1-x)) / Sqrt[1-x^2], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Mar 13 2016
STATUS
approved