OFFSET
1,2
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Théorie des espèces et Combinatoire des Structures Arborescentes, Publications du LACIM, Université du Québec à Montréal, 1994, p. 214.
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 210, 242 (3.2.68, 3.3.92)
G. Labelle, Some new computational methods in the theory of species, pp. 192-209 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f. satisfies 2*A(x) = exp(x+A(x)) - 1 - log(1-x)*A(x).
a(n) ~ n^(n-1) * sqrt(1 + (1+log(1-r))/((1-r)*(2+log(1-r))^2)) / (exp(n) * r^(n-1/2)), where r = 0.1520268451233936874315... is the root of the equation 2 + log(1-r) = exp(1+r-1/(2+log(1-r))). - Vaclav Kotesovec, Jan 08 2014
MATHEMATICA
max = 16; f[x_] := -1/(2+Log[1-x]) - ProductLog[-E^(x - 1/(2+Log[1-x]))/(2+Log[1-x])]; Rest[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!](* Jean-François Alcover, Mar 07 2012, after e.g.f. *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, A = 0; for( k=1, n, A += x * O(x^k); A = truncate( exp( x + A) - 1 - A*(1 + log( 1 - x + A - A)) )); n! * polcoeff( A, n))} /* Michael Somos, Jun 07 2012 */
CROSSREFS
KEYWORD
nonn,eigen,nice
AUTHOR
EXTENSIONS
More terms, formula from Christian G. Bower, Dec 15 1999
STATUS
approved