login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320264
Number T(n,k) of proper multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=2, 1<=k<=n-1, read by rows.
4
1, 1, 2, 3, 11, 9, 4, 38, 84, 52, 7, 125, 523, 766, 365, 10, 364, 2676, 7096, 7775, 3006, 16, 1041, 12435, 52955, 100455, 87261, 28357, 22, 2838, 54034, 348696, 1020805, 1497038, 1074766, 301064, 32, 7645, 225417, 2120284, 8995801, 19823964, 23605043, 14423564, 3549177
OFFSET
2,3
LINKS
Alois P. Heinz, Rows n = 2..150
FORMULA
T(n,k) = A257740(n,k) - A319501(n,k).
EXAMPLE
T(2,1) = 1: {a,a}.
T(3,2) = 2: {a,a,b}, {a,b,b}.
T(4,3) = 9: {a,a,b,c}, {a,a,bc}, {a,a,cb}, {b,b,a,c}, {b,b,ac}, {b,b,ca}, {c,c,a,b}, {c,c,ab}, {c,c,ba}.
Triangle T(n,k) begins:
.
. .
. 1, .
. 1, 2, .
. 3, 11, 9, .
. 4, 38, 84, 52, .
. 7, 125, 523, 766, 365, .
. 10, 364, 2676, 7096, 7775, 3006, .
. 16, 1041, 12435, 52955, 100455, 87261, 28357, .
. 22, 2838, 54034, 348696, 1020805, 1497038, 1074766, 301064, .
MAPLE
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
end:
g:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
end:
T:= (n, k)-> add((-1)^i*(g(n, k-i)-h(n$2, k-i))*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=1..n-1), n=2..12);
MATHEMATICA
h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i<1, 0,
Sum[h[n - i*j, i-1, k]*Binomial[k^i, j], {j, 0, n/i}]]];
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[Sum[
d*k^d, {d, Divisors[j]}]*g[n - j, k], {j, 1, n}]/n];
T[n_, k_] := Sum[(-1)^i*(g[n, k-i]-h[n, n, k-i])*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 1, n - 1}], {n, 2, 12}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives A047967.
Row sums give A320265.
T(n+1,n) gives A006152.
Sequence in context: A086146 A083758 A127494 * A335173 A265563 A265547
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 08 2018
STATUS
approved