login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319501 Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the set; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 16
1, 0, 1, 0, 1, 3, 0, 2, 12, 13, 0, 2, 38, 105, 73, 0, 3, 110, 588, 976, 501, 0, 4, 302, 2811, 8416, 9945, 4051, 0, 5, 806, 12354, 59488, 121710, 111396, 37633, 0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353, 0, 8, 5450, 207846, 2209276, 10096795, 23420022, 28969248, 18235680, 4596553 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A292804(n,k-i).

EXAMPLE

T(2,2) = 3: {ab}, {ba}, {a,b}.

T(3,2) = 12: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}.

T(4,2) = 38: {aaab}, {aaba}, {aabb}, {abaa}, {abab}, {abba}, {abbb}, {baaa}, {baab}, {baba}, {babb}, {bbaa}, {bbab}, {bbba}, {a,aab}, {a,aba}, {a,abb}, {a,baa}, {a,bab}, {a,bba}, {a,bbb}, {aa,ab}, {aa,ba}, {aa,bb}, {aaa,b}, {aab,b}, {ab,ba}, {ab,bb}, {aba,b}, {abb,b}, {b,baa}, {b,bab}, {b,bba}, {ba,bb}, {a,aa,b}, {a,ab,b}, {a,b,ba}, {a,b,bb}.

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1,    3;

  0, 2,   12,    13;

  0, 2,   38,   105,     73;

  0, 3,  110,   588,    976,     501;

  0, 4,  302,  2811,   8416,    9945,    4051;

  0, 5,  806, 12354,  59488,  121710,  111396,   37633;

  0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353;

MAPLE

h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))

    end:

T:= (n, k)-> add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k):

seq(seq(T(n, k), k=0..n), n=0..12);

MATHEMATICA

h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];

T[n_, k_] := Sum[(-1)^i Binomial[k, i] h[n, n, k-i], {i, 0, k}];

Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 05 2020, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007, A000009 (for n>0), A320203, A320204, A320205, A320206, A320207, A320208, A320209, A320210, A320211.

Main diagonal gives A000262.

Row sums give A319518.

T(2n,n) gives A319519.

Cf. A257740, A292804.

Sequence in context: A326602 A256548 A239098 * A302224 A302670 A302472

Adjacent sequences:  A319498 A319499 A319500 * A319502 A319503 A319504

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 04:28 EDT 2022. Contains 356953 sequences. (Running on oeis4.)