login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239098
Triangle read by rows: T(0,0)=1; T(m,0)=0; otherwise T(m,n) = (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1).
1
1, 0, 1, 0, 1, 3, 0, 2, 10, 15, 0, 6, 40, 105, 105, 0, 24, 196, 700, 1260, 945, 0, 120, 1148, 5068, 12600, 17325, 10395, 0, 720, 7848, 40740, 126280, 242550, 270270, 135135, 0, 5040, 61416, 363660, 1332100, 3213210, 5045040, 4729725, 2027025, 0, 40320, 541728, 3584856, 15020720, 43022980, 85345260, 113513400, 91891800, 34459425
OFFSET
0,6
COMMENTS
If the first column is omitted we get A075856, which has much more information about this triangle.
REFERENCES
P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979).
EXAMPLE
Triangle begins:
1,
0, 1,
0, 1, 3,
0, 2, 10, 15,
0, 6, 40, 105, 105,
0, 24, 196, 700, 1260, 945,
0, 120, 1148, 5068, 12600, 17325, 10395,
0, 720, 7848, 40740, 126280, 242550, 270270, 135135,
...
MAPLE
T:=proc(m, n) option remember;
if (m=0) and (n=0) then 1;
elif (m=0) or (n=0) then 0;
else (m-1)*T(m-1, n)+(m-1+n)*T(m-1, n-1); fi; end;
M:=20;
for m from 0 to M do
lprint([seq(T(m, n), n=0..m)]); od:
CROSSREFS
Cf. A075856.
Sequence in context: A126598 A326602 A256548 * A319501 A302224 A302670
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 23 2014
STATUS
approved