login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075856
Triangle formed from coefficients of the polynomials p(1)=x, p(n+1) = (n + x*(n+1))*p(n) + x*x*(d/dx)p(n).
6
1, 1, 3, 2, 10, 15, 6, 40, 105, 105, 24, 196, 700, 1260, 945, 120, 1148, 5068, 12600, 17325, 10395, 720, 7848, 40740, 126280, 242550, 270270, 135135, 5040, 61416, 363660, 1332100, 3213210, 5045040, 4729725, 2027025
OFFSET
1,3
COMMENTS
Constant terms of polynomials related to Ramanujan psi polynomials (see Zeng reference).
LINKS
J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), #07.3.7.
Dominique Dumont, Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).
H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
S. Ramanujan, Notebook entry
P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979). [N. Sato, Feb 19 2010]
P. W. Shor, A = B (but not quite); 3-d array with multiple recurrences, MathOverflow, Nov 2010-Nov 2011.
J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
FORMULA
T(n, k) = (n-1) * T(n-1, k) + (n+k-1) * T(n-1, k-1). - Michael Somos, Mar 17 2011
G.f. A(x, t) = Sum_{n>0} p[n] t^n / n! satisfies (dA / dt) * (x + t - 1) = x * (1 + A)^2 * (x * (1 + A) - 1). - Michael Somos, Mar 17 2011
T(n, 1) = (n-1)! = A000142(n-1). T(n, n) = A001147(n). Sum_{k>0} T(n, k) = n^n = A000312(n). Sum_{k>0} T(n, k) x^k = p[n].
From Peter Bala, Mar 14 2012: (Start)
This triangle is A185164 read by diagonals.
Let F(x) = x + (1-x)*log(1-x). The e.g.f. is given by the compositional inverse
(x - t*F(x))^(-1) = x + t*x^2/2! + (t + 3*t^2)x^3/3! + (2*t + 10*t^2 + 15*t^3)*x^4/4! + ....
Let f(x) = 1/log(1+x) and define inductively D^(n+1)(f(x)) = f(x)*(d/dx)(D^n(f(x))) with D^(0)f(x) = f(x). Then D^(n)f = (-1)^n*sum {k = 1..n} T(n,k)*f^(n-k)/((1+x)^n*f^(2n+1)).
(End)
EXAMPLE
Triangle begins
1;
1, 3;
2, 10, 15;
6, 40, 105, 105;
24, 196, 700, 1260, 945;
120, 1148, 5068, 12600, 17325, 10395;
...
p(1) = x, p(2) = 3*x^2 + x, p(3) = 15*x^3 + 10*x^2 + 2*x, etc. - Michael Somos, Mar 17 2011
MATHEMATICA
p[1] = x; p[n_] := p[n] = (n - 1 + x*n)*p[n - 1] + x*x*D[p[n - 1], x]; Flatten[Rest[CoefficientList[#1, x]] & /@ Table[p[n], {n, 8}]] (* Jean-François Alcover, May 31 2011 *)
PROG
(PARI) {T(n, k) = if( k<1 || n<k, 0, if( n == 1, 1, (n-1) * T(n-1, k) + (n+k-1) * T(n-1, k-1)))}; /* Michael Somos, Mar 17 2011 */
CROSSREFS
See A239098 for another version.
Sequence in context: A006743 A091811 A327809 * A025520 A099946 A011953
KEYWORD
nonn,tabl
AUTHOR
F. Chapoton, Oct 15 2002
STATUS
approved