OFFSET
1,3
COMMENTS
Constant terms of polynomials related to Ramanujan psi polynomials (see Zeng reference).
LINKS
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), #07.3.7.
Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).
H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
S. Ramanujan, Notebook entry
P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979). [N. Sato, Feb 19 2010]
P. W. Shor, A = B (but not quite); 3-d array with multiple recurrences, MathOverflow, Nov 2010-Nov 2011.
J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, manuscript, 1996.
J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
FORMULA
T(n, k) = (n-1) * T(n-1, k) + (n+k-1) * T(n-1, k-1). - Michael Somos, Mar 17 2011
G.f.: A(x, t) = Sum_{n>0} p[n] t^n / n! satisfies (dA / dt) * (x + t - 1) = x * (1 + A)^2 * (x * (1 + A) - 1). - Michael Somos, Mar 17 2011
T(n, 1) = (n-1)! = A000142(n-1). T(n, n) = A001147(n). Sum_{k>0} T(n, k) = n^n = A000312(n). Sum_{k>0} T(n, k) x^k = p[n].
From Peter Bala, Mar 14 2012: (Start)
This triangle is A185164 read by diagonals.
Let F(x) = x + (1-x)*log(1-x). The e.g.f. is given by the compositional inverse
(x - t*F(x))^(-1) = x + t*x^2/2! + (t + 3*t^2)x^3/3! + (2*t + 10*t^2 + 15*t^3)*x^4/4! + ....
Let f(x) = 1/log(1+x) and define inductively D^(n+1)(f(x)) = f(x)*(d/dx)(D^n(f(x))) with D^(0)f(x) = f(x). Then D^(n)f = (-1)^n*Sum_{k = 1..n} T(n,k)*f^(n-k)/((1+x)^n*f^(2n+1)).
(End)
EXAMPLE
Triangle begins
1;
1, 3;
2, 10, 15;
6, 40, 105, 105;
24, 196, 700, 1260, 945;
120, 1148, 5068, 12600, 17325, 10395;
...
p(1) = x, p(2) = 3*x^2 + x, p(3) = 15*x^3 + 10*x^2 + 2*x, etc. - Michael Somos, Mar 17 2011
MATHEMATICA
p[1] = x; p[n_] := p[n] = (n - 1 + x*n)*p[n - 1] + x*x*D[p[n - 1], x]; Flatten[Rest[CoefficientList[#1, x]] & /@ Table[p[n], {n, 8}]] (* Jean-François Alcover, May 31 2011 *)
PROG
(PARI) {T(n, k) = if( k<1 || n<k, 0, if( n == 1, 1, (n-1) * T(n-1, k) + (n+k-1) * T(n-1, k-1)))}; /* Michael Somos, Mar 17 2011 */
CROSSREFS
KEYWORD
AUTHOR
F. Chapoton, Oct 15 2002
STATUS
approved