login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006743
Number of convex polygons of length 2n on honeycomb, or EG-convex polyominoes.
(Formerly M2255)
0
1, 0, 3, 2, 10, 14, 40, 74, 176, 358, 798, 1670, 3626, 7638, 16366, 34462, 73230, 153830, 324896, 680514, 1430336, 2987310, 6253712, 13025954, 27176052, 56465878, 117458820, 243507250, 505239264, 1045301486
OFFSET
3,3
REFERENCES
Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumeration et generation aleatoire de polyominos convexes en reseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics, pages 222-234, 1997.
A. J. Guttmann and I. G. Enting, The number of convex polygons on the square and honeycomb lattices, J. Phys. A 21 (1988), L467-L474.
Fouad Ibn-Majdoub-Hassani, Combinatoire de polyominos et des tableaux decales oscillants, These de Doctorat, Laboratoire de Recherche en Informatique, Universite Paris-Sud XI, France.
K. Y. Lin, S. J. Chang, rigorous results for the number of convex polygons on the square and honeycomb lattices, J. Phys A: Math. Gen. 21 (1988) 2635
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: (1-2*x+x^2-x^4-x^2*sqrt(1-4*x^2))/((1+x)^2*(1-2*x)^2). - Paul Zimmermann
For n>=10, (n-5) a(n) = 2(n-5) a(n-1) + (7n-47) a(n-2) + 12(7-n) a(n-3) + 4(29-4n) a(n-4) + 16(n-8) a(n-5) + 16(n-8) a(n-6). This follows from the differential equation (2-2x-12x^2+12x^3+4x^4+16x^6) g(x) + (-x+2x^2+7x^3-12x^4-16x^5+16x^6+16x^7) g'(x) = 2-2x-12x^2+16x^3-2x^4-4x^6 satisfied by the g.f. sum_n>=0 a(n+3) x^n = (1-2x+x^2-x^4-x^2 sqrt(1-4x^2))/((1+x)^2 (1-2x)^2). - Dean Hickerson, Oct 26 2005
MATHEMATICA
CoefficientList[ Series[(1 - 2x + x^2 - x^4 - x^2*Sqrt[1 - 4*x^2])/(1 + x)^2/(1 - 2*x)^2, {x, 0, 29}], x] (* Robert G. Wilson v, Oct 15 2005 *)
CROSSREFS
Sequence in context: A226442 A300374 A256063 * A091811 A327809 A075856
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional references from Fouad IBN MAJDOUB HASSANI, Feb 28 2000
STATUS
approved