login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006744 Number of n-step self-avoiding walks on a Manhattan lattice.
(Formerly M1073)
3
1, 2, 4, 7, 13, 24, 44, 77, 139, 250, 450, 788, 1403, 2498, 4447, 7782, 13769, 24363, 43106, 75396, 132865, 234171, 412731, 721433, 1267901, 2228666, 3917654, 6843596, 12004150, 21059478, 36947904, 64506130, 112983428, 197921386, 346735329, 605046571, 1058544744, 1852200487 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
It seems that a(n) = A117633(n)/2 (the two sequences have similar names). Sequence A117633 is based on the paper by Malakis (1975). - Petros Hadjicostas, Jan 02 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Jamke, Table of n, a(n) for n=1..53 [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 13 2010]
D. Bennett-Wood, J. L. Cardy, I. Enting, A. J. Guttmann and A. L. Owczarek, On the Non-Universality of a Critical Exponent for Self-Avoiding Walks, Nuc. Phys. B, 528, 533-552, 1998. [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 13 2010]  Also wayback, or arxiv:9805146.
A. Malakis, Self-avoiding walks on oriented square lattices, J. Phys. A: Math. Gen. 8 (1975), no 12, 1885-1898.
S. S. Manna and A. J. Guttmann, Kinetic growth walks and trails on oriented square lattices: Hull percolation and percolation hulls, J. Phys. A 22 (1989), 3113-3122.
CROSSREFS
Cf. A117633.
Sequence in context: A128742 A318748 A107281 * A054175 A305442 A000073
KEYWORD
nonn,walk
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 17:49 EDT 2024. Contains 371797 sequences. (Running on oeis4.)