login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239097
Decimal expansion of -(gamma-log(2))/2.
12
0, 5, 7, 9, 6, 5, 7, 5, 7, 8, 2, 9, 2, 0, 6, 2, 2, 4, 4, 0, 5, 3, 6, 0, 0, 1, 5, 6, 8, 7, 8, 8, 7, 0, 6, 8, 5, 1, 6, 6, 7, 0, 3, 9, 9, 2, 1, 0, 1, 6, 5, 8, 2, 7, 6, 5, 7, 4, 5, 6, 3, 8, 7, 3, 0, 4, 2, 6, 2, 9, 4, 7, 5, 9, 6, 0, 1, 5, 0, 2, 2, 3, 3, 4, 4, 5, 8, 1, 3, 1, 8, 5, 2, 3, 3, 5, 9, 6, 9, 0, 1, 3, 6, 8, 5, 0, 1, 6, 8, 8, 5, 3, 8, 1, 8, 0, 1, 6, 2, 6, 3, 6, 2, 5, 0, 8, 1, 1, 0, 6, 3, 5, 7, 9
OFFSET
0,2
COMMENTS
Decimal expansion of the generalized Euler constant -gamma(0,2).
LINKS
D. H. Lehmer, Euler constants for arithmetical progressions, Collection of articles in memory of Juriĭ Vladimirovič Linnik. Acta Arith. 27 (1975), 125--142. MR0369233 (51 #5468). See p. 128.
FORMULA
From Amiram Eldar, Jun 30 2020: (Start)
Equals Sum_{k>=1} zeta(2*k+1)/((2*k+1)*2^(2*k+1)).
Equals Sum_{k>=1} arctanh(1/(2*k)) - 1/(2*k). (End)
EXAMPLE
.057965757829206224405360015687887068516670399210165827657456...
MATHEMATICA
Join[{0}, RealDigits[(Log[2] - EulerGamma)/2, 10, 100][[1]]] (* G. C. Greubel, Aug 28 2018 *)
PROG
(PARI) (log(2)-Euler)/2 \\ Charles R Greathouse IV, Mar 25 2014
(Magma) SetDefaultRealField(RealField(100)); R:= RealField();
(Log(2) - EulerGamma(R))/2; // G. C. Greubel, Aug 28 2018
CROSSREFS
Sequence in context: A290151 A117031 A068456 * A153612 A276483 A021637
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Mar 23 2014
STATUS
approved