login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276483
Decimal expansion of Sum_{k>=0} (2*k+1)/binomial(4*k,2*k).
3
1, 5, 7, 9, 7, 6, 8, 3, 7, 9, 5, 5, 4, 0, 2, 0, 7, 7, 5, 2, 4, 2, 9, 9, 7, 8, 5, 9, 1, 2, 3, 4, 4, 4, 8, 6, 0, 6, 2, 7, 8, 9, 5, 5, 3, 5, 7, 6, 6, 4, 9, 5, 0, 5, 5, 2, 0, 7, 1, 8, 1, 8, 5, 4, 0, 1, 6, 9, 2, 3, 7, 9, 2, 9, 8, 4, 0, 7, 3, 6, 3, 6, 7, 5, 8, 6, 0, 3, 4, 4, 4, 9, 6, 4, 2, 3, 6, 1, 3, 7, 1, 1, 4, 9, 7, 4, 5, 3, 9, 6, 1, 6, 7, 0, 3, 2, 1, 3, 2, 7
OFFSET
1,2
LINKS
Eric Weisstein's MathWorld, Catalan Number
FORMULA
Equals 2*Pi/(9*sqrt(3)) - 4*(3*sqrt(5)*log(phi) - 40)/125, where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/Catalan number(2k).
Equals Sum_{k>=0} 1/A000108(2k).
Equals Sum_{k>=0} 1/A048990(k).
EXAMPLE
1.57976837955402077524299785912344486...
MATHEMATICA
RealDigits[2 (Pi/(9 Sqrt[3])) - 4 ((3 Sqrt[5] Log[GoldenRatio] - 40)/125), 10, 120][[1]]
RealDigits[HypergeometricPFQ[{1, 1, 3/2}, {1/4, 3/4}, 1/16], 10, 120][[1]]
PROG
(PARI) suminf(k=0, 1/(binomial(4*k, 2*k)/(2*k+1))) \\ Michel Marcus, Sep 06 2016
(PARI) default(realprecision, 100); 2*Pi/(9*sqrt(3)) - 4*(3*sqrt(5)*log((1+sqrt(5))/2) - 40)/125 \\ G. C. Greubel, Nov 04 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); 2*Pi(R)/(9*Sqrt(3)) - 4*(3*Sqrt(5)*Log((1+Sqrt(5))/2) - 40)/125; // G. C. Greubel, Nov 04 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Sep 05 2016
STATUS
approved