login
A268813
Decimal expansion of sum(k>=0, 1/C(k)), where C(k) is a Catalan Number (A000108).
6
2, 8, 0, 6, 1, 3, 3, 0, 5, 0, 7, 7, 0, 7, 6, 3, 4, 8, 9, 1, 5, 2, 9, 2, 3, 6, 7, 0, 0, 6, 3, 1, 8, 0, 3, 2, 5, 4, 5, 9, 5, 8, 4, 9, 9, 9, 1, 5, 2, 3, 2, 9, 1, 4, 4, 6, 9, 7, 7, 2, 6, 6, 3, 7, 9, 5, 0, 2, 7, 6, 9, 6, 9, 3, 8, 9, 4, 9, 0, 6, 1, 4, 9, 7, 0, 7, 2, 2, 2, 1, 6, 9, 8, 3, 1, 3, 7, 8, 5, 2, 8, 2
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Catalan Number.
Wikipedia, Catalan number
FORMULA
Equals 2 + 4*Pi/(9*sqrt(3)) = 1 + A121839.
Also equals 2F1(1, 2; 1/2; 1/4), where 2F1 is the hypergeometric function 2F1.
EXAMPLE
2.80613305077076348915292367006318032545958499915232914469772663795...
MATHEMATICA
RealDigits[2 + 4*Pi/(9*Sqrt[3]), 10, 102][[1]]
PROG
(PARI) default(realprecision, 100); 2 + 4*Pi/(9*sqrt(3)) \\ G. C. Greubel, Nov 04 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); 2 + 4*Pi(R)/(9*Sqrt(3)); // G. C. Greubel, Nov 04 2018
CROSSREFS
Cf. A000108, A121839 (which is the main entry for this constant).
Sequence in context: A336405 A188924 A011055 * A372719 A242056 A195009
KEYWORD
nonn,cons
AUTHOR
STATUS
approved