login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268815
Number of purely crossing + partitions of [n].
4
1, 1, 0, 0, 1, 1, 5, 19, 76, 360, 1792, 9634, 55286, 336396, 2162554, 14629720, 103818489, 770678553, 5969822993, 48148947503, 403545713463, 3508356996105, 31587389832791, 294087418038113, 2827471212909189, 28037001032306431, 286398141349873925, 3010540174760962975
OFFSET
0,7
COMMENTS
For the definition of these special purely crossing partitions refer to Dykema link (see PC+(n) Definition 2.1 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
a(n) is the number of topologically connected (A099947) set partitions of {1,...,n} with no successive elements in the same block. For example, the a(4) = 1 through a(7) = 19 set partitions are:
{{13}{24}} {{135}{24}} {{135}{246}} {{1357}{246}}
{{13}{25}{46}} {{13}{246}{57}}
{{14}{25}{36}} {{13}{257}{46}}
{{14}{26}{35}} {{135}{26}{47}}
{{15}{24}{36}} {{135}{27}{46}}
{{136}{24}{57}}
{{136}{25}{47}}
{{137}{25}{46}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{147}{25}{36}}
{{147}{26}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{157}{24}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)
LINKS
Kenneth J. Dykema, Generating functions for purely crossing partitions, arXiv:1602.03469 [math.CO], 2016.
FORMULA
G.f.: G(x) satisfies C(x) = G(x/1-x) where C(x) is the g.f. of A099947 (see B(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies
(1) A(x) = Sum_{n>=0} A000110(n)*x^n/((1+x)^n*A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)*A(x) - k*x).
(3) A(x) = 1/(1 - x/((1+x)*A(x) - 1*x/(1 - x/((1+x)*A(x) - 2*x/(1 - x/((1+x)*A(x) - 3*x/(1 - x/((1+x)*A(x) - 4*x/(1 - x/((1+x)*A(x) - ... )))))))), a continued fraction. (End)
EXAMPLE
G.f.: A(x) = 1 + x + x^4 + x^5 + 5*x^6 + 19*x^7 + 76*x^8 + 360*x^9 + 1792*x^10 +...
MATHEMATICA
n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w] /w)-1, x/(1+x) + O[x]^n]; CoefficientList[B, x] // Rest (* Jean-François Alcover, Feb 16 2016, adapted from K. J. Dykema's code *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
intvQ[set_]:=Or[set=={}, Sort[set]==Range[Min@@set, Max@@set]];
Table[Length[Select[sps[Range[n]], And[!MatchQ[#, {___, {___, x_, y_, ___}, ___}/; x+1==y], #=={}||And@@Not/@intvQ/@Union@@@Subsets[#, {1, Length[#]-1}]]&]], {n, 0, 10}] (* Gus Wiseman, Feb 23 2019 *)
PROG
(PARI) lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x) + O(x^nn)); Vec(b); }
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)*A - k*x +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 07 2016
(PARI) {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
{Bell(n) = sum(k=0, n, Stirling2(n, k) )}
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x)*A +x*O(x^n))^m) ); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 07 2016
KEYWORD
nonn
AUTHOR
Michel Marcus, Feb 14 2016
STATUS
approved