login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324011
Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
12
1, 0, 0, 0, 1, 0, 5, 14, 66, 307, 1554, 8415, 48530, 296582, 1913561, 12988776, 92467629, 688528288, 5349409512, 43270425827, 363680219762, 3170394634443, 28619600156344, 267129951788160, 2574517930001445, 25587989366964056, 261961602231869825
OFFSET
0,7
COMMENTS
These set partitions are fixed points under Callan's bijection phi on set partitions.
LINKS
EXAMPLE
The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
MATHEMATICA
Table[Select[sps[Range[n]], And[Count[#, {_}]==0, Total[If[First[#]==1&&Last[#]==n, 1, 0]+Count[Subtract@@@Partition[#, 2, 1], -1]&/@#]==0]&]//Length, {n, 0, 10}]
CROSSREFS
Cf. A000110, A000126, A000296 (singletons allowed, or adjacencies allowed), A001610, A124323, A169985, A261139, A324012, A324014, A324015.
Sequence in context: A004030 A256413 A346212 * A194994 A166795 A128102
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 12 2019
EXTENSIONS
a(11)-a(26) from Alois P. Heinz, Feb 12 2019
STATUS
approved