|
|
A000126
|
|
A nonlinear binomial sum.
(Formerly M1103 N0421)
|
|
42
|
|
|
1, 2, 4, 8, 15, 27, 47, 80, 134, 222, 365, 597, 973, 1582, 2568, 4164, 6747, 10927, 17691, 28636, 46346, 75002, 121369, 196393, 317785, 514202, 832012, 1346240, 2178279, 3524547, 5702855, 9227432, 14930318, 24157782, 39088133, 63245949
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n)-1 counts ternary numbers with no 0 digit (A007931) and at least one 2 digit, where the total of ternary digits is <= n. E.g., a(4)-1 = 7: 2 12 21 22 112 121 211. - Frank Ellermann, Dec 02 2001
a(n) is the permanent of the n X n 0-1 matrix whose (i,j) entry is 1 iff i=1 or j=n or |i-j|<=1. For example, a(5)=15 is per([[1, 1, 1, 1, 1], [1, 1, 1, 0, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]). - David Callan, Jun 07 2006
Conjecture. Let S(1)={1} and, for n>1, let S(n) be the smallest set containing x+1 and 2x+1 for each element x in S(n-1). Then a(n) is the sum of the elements in S(n). (See A122554 for a sequence defined in this way.) - John W. Layman, Nov 21 2007
a(n+1) indexes the corner blocks on the Fibonacci spiral built from blocks of unit area (using F(1) and F(2) as the sides of the first block). - Paul Barry, Mar 06 2008
The number of length n binary words with fewer than 2 0-digits between any pair of consecutive 1-digits. - Jeffrey Liese, Dec 23 2010
If b(n) = a(n+1) then b(0) = 1 and 2*b(n) >= b(n+1) for all n > 1 which is sufficient for b(n) to be a complete sequence. - Frank M Jackson, Mar 17 2013
Also the number of non-singleton subsets of {1, ..., n + 1} with no successive elements. For example, the a(5) = 15 subsets are:
{},
{1,3}, {1,4}, {1,5}, {1,6}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
{1,3,5}, {1,3,6}, {1,4,6}, {2,4,6}.
Also the number of binary sequences with all zeros or at least 2 ones and no adjacent ones. For example, the a(1) = 1 through a(4) = 8 sequences are:
(00) (000) (0000) (00000)
(101) (0101) (00101)
(1001) (01001)
(1010) (01010)
(10001)
(10010)
(10100)
(10101)
(End)
|
|
REFERENCES
|
Grimaldi, Ralph P. A generalization of the Fibonacci sequence. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 54 (1986), 123--128. MR0885268 (89f:11030). - N. J. A. Sloane, Apr 08 2012
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Alvaro Carbonero, Beth Anne Castellano, Gary Gordon, Charles Kulick, Karie Schmitz, and Brittany Shelton, Permutations of point sets in R_d, arXiv:2106.14140 [math.CO], 2021.
Tamsin Forbes and Tony Forbes, Hanoi revisited, Math. Gaz. 100, No. 549, 435-441 (2016).
|
|
FORMULA
|
G.f.: (1 - x + x^3 ) / (( 1 - x - x^2 )*( 1 - x )^2). - Simon Plouffe in his 1992 dissertation
a(n) = Fibonacci(n+3) - (n+1) = a(n-1) + a(n-2) + n - 2
a(n+1) = 1 + Sum_{k=0..n} (Fibonacci(k+2) - 1) = Sum_{k=0..n} Fibonacci(k+2) - n. - Paul Barry, Mar 06 2008
Closed-form without extra leading 1: ((15+7*sqrt(5))*((1+sqrt(5))/2)^n+(15-7*sqrt(5))*((1-sqrt(5))/2)^n-10*n-20)/10; closed-form with extra leading 1: ((20+8*sqrt(5))*((1+sqrt(5))/2)^n+(20-8*sqrt(5))*((1-sqrt(5))/2)^n-20*n-20)/20. - Tim Monahan, Jul 16 2011
G.f. for closed-form with extra leading 1: (1-2*x+x^2+x^3)/((1-x-x^2)*(x-1)^2). - Tim Monahan, Jul 17 2011
|
|
MAPLE
|
a:= n-> (Matrix([[1, 1, 1, 2]]). Matrix(4, (i, j)-> if (i=j-1) then 1 elif j=1 then [3, -2, -1, 1][i] else 0 fi)^n)[1, 2]; seq(a(n), n=1..36); # Alois P. Heinz, Aug 26 2008
# alternative
combinat[fibonacci](n+3)-n-1 ;
end proc:
|
|
MATHEMATICA
|
LinearRecurrence[{3, -2, -1, 1}, {1, 2, 4, 8}, 40] (* or *) CoefficientList[ Series[-(1-x+x^3)/((x^2+x-1)(x-1)^2), {x, 0, 40}], x] (* Harvey P. Dale, Apr 24 2011 *)
Table[Length[Select[Subsets[Range[n]], Min@@Abs[Subtract@@@Partition[#, 2, 1, 1]]>1&]], {n, 15}] (* Gus Wiseman, Feb 10 2019 *)
|
|
PROG
|
(Python)
def seq(n):
if n < 0:
return 1
a, b = 1, 1
for i in range(n + 1):
a, b = b, a + b + i
return a
(PARI) vector(40, n, fibonacci(n+3) -(n+1)) \\ G. C. Greubel, Jul 09 2019
(Magma) [Fibonacci(n+3)-(n+1): n in [1..40]]; // G. C. Greubel, Jul 09 2019
(Sage) [fibonacci(n+3)-(n+1) for n in (1..40)] # G. C. Greubel, Jul 09 2019
(GAP) List([1..40], n-> Fibonacci(n+3)-(n+1)); # G. C. Greubel, Jul 09 2019
|
|
CROSSREFS
|
Cf. A007931: binary strings with leading 0's, or ternary strings without 0's.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|