|
|
A122554
|
|
Let S(1) = {1} and, for n>1 let S(n) be the smallest set containing x, 2x and x+2 for each element x in S(n-1). a(n) is the number of elements in S(n).
|
|
7
|
|
|
1, 3, 6, 10, 15, 23, 35, 54, 84, 132, 209, 333, 533, 856, 1378, 2222, 3587, 5795, 9367, 15146, 24496, 39624, 64101, 103705, 167785, 271468, 439230, 710674, 1149879, 1860527, 3010379, 4870878, 7881228, 12752076, 20633273, 33385317, 54018557, 87403840, 141422362
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If the set mapping has x -> x,2x,x^2 is used instead of x -> x,x+2,2x, the corresponding sequence consists of the Fibonacci numbers 1,2,3,5,8,...
Apparently a(n)= 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4) for n>6, equivalent to a(n)=A000032(n)+n-1 for n>2. - R. J. Mathar, Nov 18 2009
|
|
LINKS
|
|
|
FORMULA
|
Empirical g.f.: -x*(x^5-x^4-x^3-x^2+1) / ((x-1)^2*(x^2+x-1)). - Colin Barker, Nov 06 2014
|
|
EXAMPLE
|
Under the indicated set mapping we have {1} -> {1,2,3} -> {1,2,3,4,5,6} -> {1,2,3,4,5,6,7,8,10,12}, ..., so a(2)=3, a(3)=6, a(4)=10, etc.
|
|
MATHEMATICA
|
Do[ Print@ Length@ Nest[ Union@ Flatten[ # /. a_Integer -> {a, 2a, a + 2}] &, {1}, n], {n, 0, 32}] (* Robert G. Wilson v, Sep 27 2006 *)
|
|
PROG
|
(Python)
from sympy import chain, islice
def A122554_gen(): # generator of terms
s = {1}
while True:
yield len(s)
s = set(chain.from_iterable((x, x+2, 2*x) for x in s))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|