|
|
A122552
|
|
a(0)=a(1)=a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
|
|
3
|
|
|
1, 1, 1, 4, 7, 13, 28, 55, 109, 220, 439, 877, 1756, 3511, 7021, 14044, 28087, 56173, 112348, 224695, 449389, 898780, 1797559, 3595117, 7190236, 14380471, 28760941, 57521884, 115043767, 230087533, 460175068, 920350135, 1840700269, 3681400540
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Equals INVERT transform of (1, 0, 3, 0, 3, 0, 3, ...). - Gary W. Adamson, Apr 27 2009
For n > 3, a(n) is the number of quaternary sequences of length n-1 starting with q(0) = 0, in which all triples (q(i), q(i+1), q(i+2)) contain digits 0 and 3; cf. A294627. - Wojciech Florek, Jul 30 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a domino. - Greg Dresden and Bora Bursalı, Aug 31 2023
|
|
LINKS
|
|
|
FORMULA
|
a(3*n) = 2*a(3*n-1)+2, a(3*n+1) = 2*a(3*n)-1, a(3*n+2) = 2*a(3*n+1)-1, a(0)=1.
G.f. : (1-x^2)/(1-x-x^2-2*x^3).
a(n) = (3/7)*2^n - (1/7)*i*sqrt(3)*((-1/2) + (1/2)*i*sqrt(3))^n + (2/7)*((-1/2) - (1/2)*i*sqrt(3))^n + (2/7)*((-1/2) + (1/2)*i*sqrt(3))^n + (1/7)*i*sqrt(3)*((-1/2) - (1/2)*i*sqrt(3))^n, with n >= 0 and i=sqrt(-1). - Paolo P. Lava, Nov 19 2008
a(n+1) - 2a(n) = period 3: repeat -1,-1,2 = -A061347.
a(n) - a(n-1) = 0,0,3,3,6,15,27,54,111,... = 3*A077947.
a(n) - a(n-2) = 0,3,6,9,21,42,81,....
|
|
EXAMPLE
|
It is shown in A294627 that there are 42 quaternary sequences (i.e., build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(5=4+1) = 13 of them start with 0: 003x, 030x, 03y0, 0y30, 0330, where x = 0, 1, 2, 3 and y = 1, 2.
|
|
MAPLE
|
seq(coeff(series((1-x^2)/(1-x-x^2-2*x^3), x, n+1), x, n), n=0..40); # Muniru A Asiru, Aug 02 2018
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1, 2}, {1, 1, 1}, 40]
CoefficientList[ Series[(x^2 - 1)/(2x^3 + x^2 + x - 1), {x, 0, 35}], x] (* Robert G. Wilson v, Jul 30 2018 *)
|
|
PROG
|
(Sage) from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1, 1, 1, 1, 1, 2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
(GAP) a:=[1, 1, 1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, Jul 30 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Corrected by T. D. Noe, Nov 01 2006, Nov 07 2006
Typo in definition corrected by Paul Curtz, Oct 02 2009
|
|
STATUS
|
approved
|
|
|
|