login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122551
Denominators of the coefficients of the series for InverseErf(x).
2
2, 24, 960, 80640, 11612160, 2554675200, 797058662400, 334764638208000, 182111963185152000, 124564582818643968000, 104634249567660933120000, 105889860562472864317440000, 127067832674967437180928000000
OFFSET
0,1
COMMENTS
Note: the term in x^11 in the series expansion above has a common factor of 7 between the numerator and denominator and is usually written 34807/364953600. The common factor of 7 occurs at n=6, 9, 12, etc. The sequence of the coefficients can be generated by combining this series with A002067.
LINKS
FORMULA
a(n) = (2*n+1)!*2^(n+1).
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = sinh(1/sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(1/sqrt(2))/sqrt(2). (End)
EXAMPLE
InverseErf(x) = (1/2*sqrt(Pi))*x + (1/24*Pi^(3/2))*x^3 + (7/960*Pi^(5/2))*x^5 + (127/80640*Pi^(7/2))*x^7 + (4369/11612160*Pi^(9/2))*x^9 + (243649/2554675200*Pi^(11/2))*x^11 + ...
MAPLE
denominators:=[seq((2*n+1)!*2^(n+1), n=0..14)]; a:=proc(n) if(n < 2) then RETURN(1) fi; sum('binomial(2*n, 2*k)*a(k)*a(n-k-1)', 'k'=0..n-1); end; numerators:=[seq(a(n), n=0..14)];
MATHEMATICA
Table[(2*n + 1)!*2^(n + 1), {n, 0, 25}] (* G. C. Greubel, Mar 19 2017 *)
PROG
(PARI) for(n=0, 25, print1((2*n+1)!*2^(n+1), ", ")) \\ G. C. Greubel, Mar 19 2017
CROSSREFS
Sequence in context: A015212 A012228 A062029 * A136524 A213984 A129622
KEYWORD
easy,nonn
AUTHOR
Marcus Blackburn (marcus.blackburn(AT)dial.pipex.com), Sep 20 2006
STATUS
approved