This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092676 Numerators of coefficients in the series for inverf(2x/sqrt(Pi)). 5
 1, 1, 7, 127, 4369, 34807, 20036983, 2280356863, 49020204823, 65967241200001, 15773461423793767, 655889589032992201, 94020690191035873697, 655782249799531714375489, 44737200694996264619809969 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Differs from A002067(n) at n = 6, 9, 12, .... Following Blair et al., we use the notation inverf() for the inverse of the error function. LINKS G. C. Greubel, Table of n, a(n) for n = 1..230 G. Alkauskas, Algebraic and abelian solutions to the projective translation equation, arXiv preprint arXiv:1506.08028 [math.AG], 2015-2016; Aequationes Math. 90 (4) (2016), 727-763. J. M. Blair, C. A. Edwards and J. H. Johnson, Rational Chebyshev approximations for the inverse of the error function, Math. Comp. 30 (1976), 827-830. L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470. Eric Weisstein, Mathematica program and first 50 terms of the series Eric Weisstein's World of Mathematics, Inverse Erf Wikipedia, Error Function EXAMPLE Inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ... The first few coefficients are 1, 1, 7/6, 127/90, 4369/2520, 34807/16200, 20036983/7484400, 2280356863/681080400, ... MAPLE c:=proc(n) option remember; if n <= 0 then 1 else add( c(k)*c(n-k-1)/((k+1)*(2*k+1)), k=0..n-1 ) fi; end; MATHEMATICA Numerator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}], x]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 09 2017 *) CROSSREFS Cf. A002067, A092677, A052712. For denominators see A132467. Sequence in context: A139291 A274673 A215066 * A002067 A274571 A138523 Adjacent sequences:  A092673 A092674 A092675 * A092677 A092678 A092679 KEYWORD nonn,frac AUTHOR Eric W. Weisstein, Mar 02 2004 EXTENSIONS Edited by N. J. A. Sloane, Nov 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 06:54 EDT 2019. Contains 326162 sequences. (Running on oeis4.)