login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215066
Expansion of e.g.f.: Sum_{n>=0} Product_{k=1..n} (exp((2*k-1)*x) - 1).
6
1, 1, 7, 127, 4315, 235831, 18911467, 2091412807, 305035062955, 56729101908151, 13102338649018027, 3679320979659518887, 1234515698986458346795, 487763952468349266962071, 224150079034073231822617387, 118541831524545132821950527367
OFFSET
0,3
LINKS
A. Folsom, K. Ono and R. C. Rhoades, Ramanujan's radial limits, 2013. - From N. J. A. Sloane, Feb 09 2013
Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
Folsom et al. give a closed form for a(n). - N. J. A. Sloane, Feb 09 2013
E.g.f.: 1 + (exp(x)-1)/(W(0)-exp(x)+1), where W(k) = (exp(x))^(2*k+1) - ((exp(x))^(2*k+3)-1)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 05 2014
a(n) ~ sqrt(6) * 24^n * (n!)^2 / (sqrt(n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, May 04 2014
E.g.f.: 1/2*( 1 + Sum_{n>=0} exp((2*n+1)*x)*Product_{k=1..n} (exp((2*k-1)*x) - 1) ). Cf. A053250 and A207569. - Peter Bala, May 15 2017
Conjectural g.f.: Sum_{n >= 0} (-1)^n*Product_{k = 1..n} (1 + (-1)^k*exp(- k*t)). Cf. A158690. - Peter Bala, Jan 28 2021
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 127*x^3/3! + 4315*x^4/4! + 235831*x^5/5! +...
where
A(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(3*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1)*(exp(9*x)-1) +...
MAPLE
m:= 20; S:= series( add(mul(exp((2*k-1)*x)-1, k=1..j), j=0..m+1), x, m+1): seq(factorial(j)*coeff(S, x, j), j = 0..m); # G. C. Greubel, Feb 07 2020
MATHEMATICA
Table[((-1)^n*2*Sum[Sum[n!/(a!*(2b)!*(n-a-2b)!)*(3/2)^a*(5/2)^(2b) * EulerE[2a+2b], {a, 0, n}], {b, 0, n/2}] + 2*(-1)^n*Sum[n!/((n-2b)!*(2b)!)*(3/2)^(n-2b)*(1/2)^(2b)*EulerE[2n-2b], {b, 0, n/2}])/4, {n, 0, 20}] (* Vaclav Kotesovec, May 04 2014 after A. Folsom *)
With[{m=20}, CoefficientList[Series[Sum[Product[Exp[(2*k-1)*x] -1, {k, j}], {j, 0, m+2}], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 07 2020 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n+1, prod(k=1, m, exp((2*k-1)*x+x*O(x^n))-1)), n)}
for(n=0, 26, print1(a(n), ", "))
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&*[Exp((2*k-1)*x) -1: k in [1..j]]): j in [1..m+1]]) )); [1] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 07 2020
(Sage)
m=20;
def A215066_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( sum(product(exp((2*k-1)*x)-1 for k in (1..j)) for j in (0..m)) ).list()
a=A215066_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Feb 07 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Aug 01 2012
STATUS
approved