login
A215068
Numbers n such that for all divisors d of n, d+1 is either a prime or a perfect power.
1
1, 2, 3, 4, 6, 7, 8, 12, 16, 24, 31, 48, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
OFFSET
1,2
COMMENTS
Apparently the divisors of 48 (A018261) together with the Mersenne primes (A000668).
Confirmed by Robert Israel, Aug 02 2020: see link.
Next term > 2*10^8.
MAPLE
sort([op(numtheory:-divisors(48)), seq(numtheory:-mersenne([i]), i=2..12)]); # Robert Israel, Aug 02 2020
PROG
(PARI)
isA215068(n)=
{
my(x);
fordiv (n, d,
d1 = d + 1;
if ( isprime(d1) || ispower(d1), next() );
return(0);
);
return(1);
}
for (n=1, 10^9, if(isA215068(n), print1(n, ", ")));
CROSSREFS
Cf. A018261 (divisors of 48), A000668 (Mersenne primes), A001597 (perfect powers).
Sequence in context: A018314 A212216 A199639 * A239011 A070525 A283112
KEYWORD
nonn,hard
AUTHOR
Joerg Arndt, Aug 02 2012
STATUS
approved